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Abstract: A novel method for predicting hotspots and coldspots using support vector machine (SVM) based on
statistical learning theory is developed. This method is applied to published 303 hot and 48 cold open reading
frames (ORFs) in Saccharomyces cerevisiae. The sequence features of general dinucleotide abundance and
dinucleotide abundance based on codon usage are extracted, and then the data sets are classified with different
parameters and kernel functions combined with the method of two-fold cross validation. The result indicates
that 87.47% accuracy can be reached when classifying hot and cold ORF sequences with the kernel of radial
basis function combined with dinucleotide abundance based on codon usage.
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Meiotic recombination is a fundamental biological
feature about which we still know remarkably little.
Recombination occurs more frequently in some regions
of the eukaryotic genomes than in others, with varia-
tions of several orders of magnitude observed in fre-
quencies of meiotic exchange per unit physical dis-
tance''’. Hotspots are genomic regions with unusually
high levels of meiotic recombination, and contrarily,
coldspots are the regions with relatively low levels of
meiotic recombination'”'. Although observations con-
cerning individual hotspots and coldspots have given
clues as to the mechanism of meiotic recombination in-
itiation, our ability to predict hotspots and coldspots
from DNA sequence information is very limited" .
From studies in yeast, we know that genetically defined
hotspots are associated with local double-strand DNA
breaks (DSBs)'"?. Several global mapping studies
have been performed to map DSB sites on chromo-
somes in yeast to determine whether they share com-
mon DNA sequences and/or structural elements” .
Although experimental techniques can be applied for
this purpose, they are laborious and time-consuming
and, therefore, have become infeasible for large num-
bers of genomic sequences. Hence, efficient and relia-
ble computational methods for discriminating hotspots
from coldspots are required.

A suitable approach to this task employs statistical
learning theory, such as the support vector machine
(SVM), which is a type of supervised machine learning
algorithm that can be integrated with prior knowledge
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based on investigation.

In this study, we develop a novel method for pre-
dicting hot and cold ORFs located in hotspots and
coldspots by using dinucleotide abundance!® combined
with SVM to extract sequence features and to deter-
mine classification, respectively. Application of this
method to published data sets demonstrates that the
method can distinguish hot and cold ORFs with high
accuracy.

1 Materials and Methods

1.1 Data set

Gerton et al. have estimated relative recombination
rates for most of the Saccharomyces cerevisiae loci
using DNA microarrays'”' . They detected 303 hot ORFs
clustered into 177 hotspots whose recombination rates
ranked in the top 12.5% and 49 cold ORFs clustered
into 40 coldspots whose recombination rate ranked in
the bottom 12.5% " In this study, we extracted the
303 hot ORFs and 48 cold ORFs (one of the cold
OREFs listed in Ref. [2] was not correct) from the Gen-
Bank database. So, the final data set for analysis com-
prised 351 sequences, which contained no ORFs shorter
than 150 bp.
1.2 Dinucleotide abundance

Dinucleotide abundance was measured by frequen-
cies of dinucleotides (FD). Each ORF was represented
by a 16-dimensional vector with respect to the 16 dinu-
cleotides. The FD value of the i-th dinucleotide was
calculated by

i _ 0
Jin = Z (1)

where o, is the observed number of the i-th dinucleoti-

de made up of two continuous nucleotides, and n; is
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the total number of dinucleotides in the ORF.
Considering the codon composition in the
ORFs'", we extended the definition of DA by consid-
ering the composition of dinucleotides in each codon
position for the selected ORFs. The first two nucleo-
tides in the codon could be defined as one kind of di-
nucleotide. At the same time, the last two nucleotides
in the codon and the first and third nucleotides in the
codon were also defined as two kinds of dinucleotides.
The extended dinucleotide abundance (EDA) value of
the i-th dinucleotide for the j-th definition of dinucle-
otides was calculated by
. 0.
fuoa =n7'; (2)
where j may be 0, 1,2, 3; each indicates one kind of di-

nucleotide. 0 means general dinucleotide made up of
two continuous nucleotides; 1 means the dinucleotide
made up of the first two nucleotides in the codon; 2
means the dinucleotide made up of the last two nucleo-
tides in the codon; 3 means the dinucleotide made up of
the first and third nucleotides in the codon.

1.3 Support vector machine

Support vector machine is a relatively new type of
supervised learning algorithm for two-or multi-class
classification based on linear decision rules'®”. SVM
takes as input i. i. d. (independent and identically dis-
tributed) training samples (x,, y,), ..., (x,,,), where
x; represents the sample attributes and y, e { -1, +1}.

SVM will then find a hyperplane separating the
training instances by their classes and maximizing the
distance from the closest examples to the hyperplane
(maximum-margin hyperplane). The classification of a
sample will be determined by the sign of the function:

f(x) ={w,x) +b (3)
where w and b are the parameters of the hyperplane; a
point x is classified as positive (negative) if f(x) >0
(f(x) <0). The examples closest to the hyperplane are
called support vectors and are crucial for training.

For many training sets it will not be possible to
separate samples by a linear function in the original
feature space, so training instances are mapped into a
higher dimensional space by a function ¢@. SVM will
then find a linear maximum-margin hyperplane in this
higher dimensional space. In order to solve this prob-
lem, it is not necessary to directly define the mapping
into higher dimensional space, but it is sufficient to

give the dot product of two instances in this space'”.

K(x;, x) = (p(x), (x))) (4)
Eq. (4) is called a kernel function. Commonly used
kernel functions comprise linear, polynomial and radial

basis functions.

light  yersion 6. 01

In this paper, we used SVM
(http: //svmlight. joachims. org/) written by Joachims
for data training and classifying. All the kernel parame-
ters were kept constant except for regulatory parameters
B and C. Different kernel functions were used in our
experiments, including linear function, polynomial
function and radial basis function. The best results were
obtained by using the radial basis function kernel with
y =150. The values of regulatory parameters B, C and J
were optimized to 0 to 200, respectively.

As in other statistical learning studies, SVM pre-
diction accuracy can be described by means of the clas-
sification accuracy, precision and recall.

Npp + Ny

a= (5)
Rpp + Ny + Npp + Npy

np
= 6
P e (6)

n
r=——r— (7)
Npp + ey

where np, noy, g and ng, represent true positive, true
negative, false positive, and false negative numbers, re-
spectively.

2 Results and Discussion

2.1 Prediction accuracy

The basis of our approach is to describe hot and
cold ORFs as vectors in a multi-dimensional feature
space. We used two kinds of mapping methods ( FD
and EDA) to extract features from ORF sequences.
Then we subjected the feature vectors representing
training sequences to a supervised machine learning al-
gorithm SVM.

To estimate the performance of the complete pro-
cedure, two-fold cross-validation was used. Two-fold
cross-validation consisted of splitting the data set of hot
and cold ORFs randomly into two parts and then alter-
natively using one part for testing and the remainder
for training. When we applied the FD, each ORF was
described as a 16-dimensional vector. We could classify
the test data set with 85.47% accuracy by using the
kernel of radial basis function. If we combined these
four kinds of dinucleotides together, each ORF was de-
scribed as a 64-dimensional vector. We could classify
the test data sets with 87.47% accuracy by using the
kernel of radial basis function (see Tab. 1). The results
indicate that the sequence features derived from EDA
are better than from FD. The first column in Tab. 1 in-
dicates the kernel function used in SVM.
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Tab.1 Prediction accuracy of SVM classification of hot and cold ORFs
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Fig.2 Average abundance of the dinucleotides of type O to 3. (a) Type 0; (b) Type 1; (c) Type 2; (d) Type 3
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distribution of four kinds of dinucleotides in 303 hot
and 48 cold ORFs. From these figures, we can see that
the average abundance of those dinucleotides includ-
ing guanine or cytosine are higher in hot ORFs than in
cold ORFs. It has been reported that the position of
hotspots may be regulated by some features of chro-
mosome structure related to GC-richness in S. cerevi-

siae? >

. This kind of positive correlation between
G + C content and recombination rate was also ob-
served in organisms, such as Drosophila melano-
gaster, mouse and human. In such eukaryotic organ-
isms, the recombination machinery induces genetic
conversion between parental chromosomes during
meiosis. Experimental evidence in mammals suggests
that genetic conversion associated with recombination
favors the copy of the most GC-rich sequence over the
other'"' =",

To assess the statistical differences between the
hot and cold ORFs, the frequencies of dinucleotides in
the hot and cold data sets were compared using an y’
test. The frequencies of 42 dinucleotides were found to
be significantly different (p <0.05) between the two
groups (see Tab. 2), which supported the feasibility of
our classification method again.

Tab.2 P values generated by y* test

Dinucleotides Py P P, Py
TT 0 0. 005 0 0
TC 0.313 0.114 0 0
TA 0 0 0 0
TG 0. 296 0. 302 0. 341 0. 002
CT 0.954 0. 042 0.912 0.030
CC 0 0 0 0
CA 0. 001 0.247 0.163 0
CG 0 0. 004 0 0
AT 0 0. 001 0 0. 002
AC 0 0. 002 0 0. 181
AA 0. 021 0.6 0. 001 0. 024
AG 0. 242 0 0.253 0. 005
GT 0.244 0. 003 0. 399 0.121
GC 0 0. 001 0 0
GA 0.072 0. 660 0.426 0. 020
GG 0. 338 0. 188 0. 037 0. 136

Note: Py, P,, P,, P; mean the p values in the four kinds of dinucle-

otieds, respectively.

In addition, Gerton et al. have found the correla-
tions between the hot and cold ORFs and gene func-
tion. One interpretation of these correlations is that
certain categories of genes are associated with a parti-
cular chromatin structure that is favorable (hotspots)
or unfavorable ( coldspots) for initiating meiotic re-
combination'”' . It has also been reported that there is a
relationship between gene function and the codon us-

age pattern in eukaryotic organisms''*'”'. Our EDA
attributes, to some extent, describe the codon bias of
the ORFs in S. cerevisiae. Therefore, taken together,
we conclude that with our representation in the SVM,
the EDA attributes are deemed to perform accurate
classifications well.
2.3 Potential improvements

The training data set is important to develop ac-
curate SVM classification systems for hot and cold
ORFs. At present, the only publicly available and vali-
dated 303 hot and 48 cold ORFs are used in this
work. This data set may not be representative of all
hotspots. Hence, further improvement in the predic-
tion capability is expected if a more comprehensive
training data is used. In this study, we extracted fea-
tures just from the DNA sequences. Some experiments
indicated that transcription elements were correlated
t1-2I 'Hence, prediction of hot and cold
ORFs by combining computer classification with addi-

with hotspots

tional information such as transcription factors and
structure information is helpful in developing a better
tool for predicting hot ORFs.

3 Conclusion

This study shows that the SVM classification sys-
tem extracting features using DA from DNA se-
quences performs well, and the result from using EDA
is better than that using FD. The study provides evi-
dence that there is a kind of positive correlation be-
tween G + C content and recombination rate” ™. At
the same time, as our EDA attributes describe the co-
don bias of the ORFs in S. cerevisiae, the high accura-
cy also suggests that there is a relationship between
hot ORFs and the codon usage pattern in S. cerevisi-
ae"'*" . This method extracts features only from DNA
sequences, so it can also be easily extended to other
eukaryotic genomes.
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