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Analysis of response time probability distribution of workflows
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Abstract: An evaluation approach for the response time probability distribution of workflows based on the fluid

stochastic Petri net formalism is presented. Firstly, some problems about stochastic workflow net modeling are

discussed. Then how to convert a stochastic workflow net model into a fluid stochastic Petri net model is

described. The response time distribution can be obtained directly upon the transient state solution of the fluid

stochastic Petri net model. In the proposed approach, there are not any restrictions on the structure of workflow

models, and the processing times of workflow tasks can be modeled by using arbitrary probability distributions.

Large workflow models can be efficiently tackled by recursively using a net reduction technique.

Key words: workflow; response time; stochastic workflow net; fluid stochastic Petri net

A workflow is a business process in which a set of
logically related tasks are performed by different pro-
cessing entities, be it with regard to either machines or
humans. Individual cases are routed through the busi-
ness process along the tasks that should be performed
for them. Workflow management technology aims at
the automated support and coordination of business
processes to reduce costs and flow times, and to in-
crease the quality of service and productivity.

In this paper we focus on the time between the
start and the end of the processing of a single workflow
instance, i. e. the response time. The response time is
one of the most important performance indicators in
business. Often, a low or stable response time is a de-
sirable or even necessary characteristic of a business
process. This makes it possible for an organization to
be more responsive to customers’ needs, thus providing
a competitive edge. Therefore, it is important to evalu-
ate the response time in business process redesign.

For workflow performance modeling stochastic
durations should be integrated to model the processing
times of tasks. That is because resources, especially hu-
man resources, do not deliver constant productivity. On
the other hand, in order to reduce complexity of model-
ing, each selective routing is assigned a probability
weight, instead of modeling the specific cause. Thus,
stochastic approaches should be chosen to analyze the
response time.

Simulation is a simple flexible technique suited
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for the performance evaluation of almost any type of
business process'''; however, simulation is an approxi-
mation method and may be time consuming. A time-
efficient analytical approach that can deliver exact re-
sults would be preferable in most cases. In Refs. [2 -
6], the authors computed the average response time of
a process using performance analysis techniques based
on a general stochastic Petri net, a colored stochastic
Petri net or a queuing theory. The hypothesis of expo-
nential distributions in their models, however, gave
more qualitative rather than quantitative results of real
workflow systems. And, moreover, the average re-
sponse time cannot indicate the stability of workflow
performance. If the variation of the response time is
large, the average is hardly suitable to give customers
guarantees about delivery times.

To achieve a comprehensive and accurate per-
formance evaluation we need to compute the response
time probability distribution of workflows, and allow
the workflow service characteristics to be modeled by
using arbitrary probability distributions. Three approa-
ches have been presented to obtain the response time
distribution, and they are all based on variants of the
stochastic timed Petri net. In Ref. [6], non-exponential
distribution was approximated by phase type distribu-
tion, so the improved accuracy came at the price of in-
creased state-space size. In Ref. [7], the discrete Fou-
rier transform was used to analyze a class of discrete
stochastic workflow nets. Another approach based on
the Semi-Markovian stochastic Petri net was proposed
in Ref. [8], in which the concurrent enabling of general
distribution transitions was strictly prohibited. The
above approaches, however, are feasible only for parti-
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cular kinds of workflows.

Petri nets are successfully applied in the modeling
and analysis of workflow systems, thus we also apply a
stochastic workflow net (SWN) to model workflows in
this paper. We use a recently developed formalism
called a fluid stochastic Petri net (FSPN) to compute
the response time distribution. To reduce the computa-
tional complexity, we adapt the reduction method pro-
posed in Ref. [8] to deal with large models. In Ref.
[9], we present an evaluation approach for the average
response time of workflows based on the steady state
analysis of the FSPN models, but the existing numeri-
cal methods have problems regarding the analysis of
the FSPN models of realistic workflows.

1 Stochastic Workflow Net

Definition 1(place/transition net) A place/tran-
sition net is a tuple (P, T, F), where
e P is a finite set of places;
e 7T is a finite set of transitions such that PN T = @;
e FC(PxT)U(TxP) is a set of directed arcs.

For any node x € PUT, the preset of x is defined
as “x ={y | yFx}, and the postset of x is defined as x™ =
{y | xFy}.

Definition 2 (workflow net'"”) Let N=(P, T,
F) be a place/transition net and t* ¢ PUT. Net N is a
workflow net if and only if

e P contains a source place i: ‘i =@, and a sink
place 0:0" = ®;

e The short-circuited net N* = (P, TU{t" }, FU
{(t" xi),(oxt")}) is strongly connected.

The SWN is a stochastically timed variant of the
workflow net. In the SWN, the set of transitions is par-
titioned into three subsets: T,, Ty, and T,
(i.e. T=TgUT UT,). T, is a set of transitions with
arbitrary firing time distributions. 7 is a set of expo-
nentially distributed transitions and 7; is a set of imme-
diate ones which have a constant zero firing time.

A timed transition T, e Ty U T is depicted as a
rectangular box, which stands for a task of the modeled
workflow. The firing time distributions of the timed
transitions model the stochastic processing times of the
tasks. An immediate transition #; € 7, only represents a
routing relation, which does not have a counterpart in
the workflow and is drawn as a thick bar. We denote
the timed transitions with uppercase letters and the im-
mediate ones with lowercase letters.

Fig. 1 shows an SWN model, which includes the
six basic forms of junctions for workflow tasks defined
by WIMC, namely, AND-join, AND-split, OR-join,

OR-split, iteration and causality. The SWN models a
workflow process composed of eight tasks: 7', 7,, ...,
T,. Transition ¢, is an immediate transition used to syn-
chronize two parallel flows in this example, which does
not represent a task.

Fig.1 An SWN model

An SWN model captures the control flow struc-
ture of the modeled workflow. The underlying stochas-
tic process of the SWN model expresses the way that a
workflow instance is handled. In the following sections
we only consider the dynamic behavior of a single case
in isolation within a workflow.

Each task has an infinite server semantics, that is
to say, we assume that sufficient resources are always
available when there is a task to be processed. In other
words, the resource capacity is infinite; no waiting time
can occur due to the lack of resources. In our ap-
proach, all processing times for one specific task—a
timed transition—are independently sampled on the ba-
sis of the same probability distribution. For each transi-
tion T; e T;, the enabling delay is represented with a
general continuous distribution F,(7), whereas only an
instantaneous firing rate A, is assigned to each transi-
tion T; e Ty, for the simplicity of expression. The instan-
taneous firing rate function A;(7) of transition 7; e T
with distribution F,(7) is given by
Pr{X<r+Ar|X>7} _

At B
dF(n) 1 _f(D) o
dr 1-F(7) F/(7)
In Refs. [2 — 7] conflicts between timed transi-

A = i

tions are resolved by race policy: when several timed
transitions are enabled in a given marking, the transi-
tion with the shortest associated delay fires first ( thus
disabling the other conflicting transitions). That is not
the case; the actual routing of the process control flow
is determined by evaluation of the transition conditions
of the process rather than by comparison of the pro-
cessing times of the corresponding tasks, so we adopt a
pre-selection policy. Not only conflicts between imme-
diate transitions, but also conflicts between timed ones
are resolved by a probabilistic choice ( the firing proba-
bility of a transition is given by the fraction of its
weight and the sum of the weights of all enabled tran-
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sitions belonging to an effective conflict set) . For SWN
workflow models we only need to pay attention to all
the conditional routings (i.e. OR-split junction).

For the analysis of the response time, it is necessa-
ry to specify the stochastic information that indicates
the probabilities of transitions being fired at runtime
and the processing times of tasks. The specification of
transitional probabilities and distribution functions,
which statistically describes workflow behavior at
runtime, is based on data coming from specialists’ ex-
perience and the workflow system log.

We also assume that the routing decisions and the
task processing times are statistically independent. But
in fact, they are not independent from each other, be-
cause the actual routings and processing times depend
on the workflow attributes of any given case. A source
of inaccuracy would be introduced to the model if the
assumption of independence were made.

2 Fluid Stochastic Petri Net

The FSPN is a high-level modeling formalism that
enables a simple description of a complex hybrid sys-
tem with both continuous and discrete components''" .
The FSPN can also be thought of as a graphical lan-
guage to represent (non-Markovian) stochastic proces-

. 12
ses with rewards'"”

. Due to space limitation we only
review some of the basic concepts and notations about
the first-order FSPN that we use in this paper. A com-
prehensive description is given in Ref. [11].

A first-order FSPN is a tuple (P, T, A, A, W, v,
M,), where the set of places (P =P.UP,) is divided
into the fluid (continuous) and the discrete places. The
discrete places (the elements of P,) are drawn as sin-
gle-lined circles and hold an integer number of tokens
as usual, whereas the continuous places (the elements
of P.) are drawn as two concentric circles and they
hold a real-value amount of fluid. The set of transitions
T =T, UT, is composed of the exponentially distributed
and the immediate transitions as defined in section 1.

The marking M = (m, x) consists of a discrete part
m =(#p,, p; € P,), where #p, denotes the number of
discrete tokens in discrete place p,, and a continuous
part, a vector representing the fluid level in each fluid
place, x = (x,, p € Pc). The initial marking is M, =
(my,x,). We use S to denote the partially discrete and
partially continuous state space and S, the discrete
component of the state space.

The set of arcs A = A, UA: UAg is divided into
three subsets: the discrete arcs (the elements of Ap),
the continuous arcs (A.) and the flush-out arcs (Ap).

The discrete arcs are depicted as thin single-lined ar-
rows, whereas the continuous arcs are drawn as double-
lined arrows. The flush-out arcs, which are depicted as
thick single-lined arrows, only connect continuous
places to timed transitions, and describe the capability
of a transition to flush out all the existing fluid from a
continuous place when it fires.

The firing rate function A: 7, x S—R" is defined
for exponential transitions. An exponential transition
T;, enabled in a discrete marking m; with fluid level x
in the continuous places, fires with rate A (7T}, m;, x),
allowing the firing rates to be dependent on the discrete
and the continuous components of the marking.

The weight function W: T; x S, —R " is defined
for immediate transitions, and is used to solve con-
flicts. The function y: Ac x S—R" is called the flow
rate function and describes the marking dependent flow
of fluid across continuous arcs.

An FSPN model is shown in Fig.2. There are two
fluid places, p, and p,. Transition 7,(i =3,4) and flu-
id place p (i =3,4) are connected by a continuous arc
wit a constant unitary flow rate and a flush-out arc.

Pa3

O—{=O
P9y Ts P4

P3 ts

pg

Pa
Fig.2 An FSPN model

The stochastic marking process underlying the
FSPN is a Markov process in continuous time with
mixed discrete and continuous state space, M (1) =
{(m(7),x(7)), =0}, where m(7) is the discrete
marking at time 7, and x(7) is a random variable vec-
tor, representing the fluid levels in the fluid places at
time 7. For the governing equations of the stochastic
process, Ref.[11] should be referred to.

Up to now, the numerical methods developed for
the solution of the FSPN are efficient only for those
models with a very few fluid places.

3 Analysis

As discussed above, the existing techniques have
problems regarding the analysis of large FSPN models
coming from realistic workflows. We, therefore, need
an appropriate net reduction method that preserves the
external observable timing properties to facilitate the
analysis of large workflow models. A reduction ap-
proach for the SWN models is presented in Ref. [8],
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which preserves soundness and response time distribu-
tion. Most of the SWN models are highly structured,
thus the method can efficiently tackle large workflow
models. By recursively using the approach we can de-
crease greatly the computation effort. In this section we
describe how to transform one of the isolated subsys-
tems (can be viewed as an SWN model) detected by
using the reduction method into an FSPN model, and
how to compute its response time distribution.

First, we have to separate conflict resolution from
timing specification of transitions. The conflicts among
timed transitions can be transferred to a barrier of con-
flicting immediate transitions, followed by the set of
timed transitions.

A mapping approach to convert a non-Markovian
SPN to an FSPN was described in Ref. [ 12]; however,
the method could not be used in the case where the en-
abling degree of timed transitions might be more than
one. As for SWN models, the enabling degree of any
transition could only be zero or one when a single
process instance in isolation within a workflow was
considered. Therefore, the approach can be applied here
to transform an SWN to an FSPN.

Because pre-selection policy is adapted to resolve
the conflicts among timed transitions rather than race
policy, there is no difference between preemptive re-
sume (prs) and preemptive repeat different ( prd)
memory policies''”. We will take all general distribu-
tion transitions as having a prs memory policy for sim-
plicity.

For each general distributed transition 7; € T in
the considered SWN model, we need to add a fluid
place p.;, which represents the memory of the transi-
tion. Transition 7, is connected to place p,; with a fluid
arc with an associated flow rate y((7T;, p.;), M) =1.
Transition 7 is also connected to fluid place p_ with a
flush-out arc so that fluid place p_, looses all its fluid,
as soon as T; fires. Assuming that the probability distri-
bution function of transition 7 is F,(7), and the prob-
ability density function (pdf) is f;(7), we can obtain
the instantaneous firing rate function A,(7) according
to Eq. (1). The instantaneous firing rate of transition 7,
in the resulting FSPN model is chosen to be dependent
on the fluid level x; of place p , A(T,, M) =A(T,;, m,,
x) =A;(x;).

In particular, automatic tasks often have a deter-
ministic processing time; the corresponding transitions
in the SWN model would have a deterministic firing
time. When the SWN model is converted into an FSPN
model, the deterministic transitions would introduce

vanishing markings dependent on fluid levels. To avoid
this awkward situation, we propose that a deterministic
distribution should be approximated using a normal
distribution with kurtosis large enough.

Finally, the initial marking of the FSPN model is
M, =(my, x,) =((#i=1),0), where i is the source
place of the converted SWN model, that is, only the
source place i has a token, and the fluid levels of all
the fluid places are zero.

In the following, we give the equations for the
stochastic marking process which describes the dynam-
ic behavior of the FSPN model.

For any fluid place p_ in the FSPN model, only
one transition 7, may influence its fluid level. When

i

transition 7, is enabled, the fluid in fluid place p
would increase at a constant unitary rate. Therefore, the
actual rate of change of fluid level for fluid place p; in

discrete marking m; is
ra(m;) = {

where E(m;) denotes the set of enabled transitions in

1 if T, e E(m,)

0 otherwise

discrete marking m;. All the possible actual flow rates
for fluid place p, are collected into a diagonal matrix
R(ci), and ry(ci) =r,(m;) is the element of R(ci).

Before giving out the infinitesimal generator ma-
trix of the stochastic process, we should remove all the
vanishing markings from the discrete state space by any
standard general stochastic Petri net analysis technique.
The matrix Q(x, @) accounts for the transition rates
among tangible states when no flush-out occurs, and
Q(x, ci), with p; € P, accounts for the transition rates
among tangible states when flush-out of place p_ oc-
curs (There is no possibility in the FSPN model where
a transition firing flushes out two or more fluid places
simultaneously. ) . Formally speaking:

g,(x, @) = D (T, m;, x)
TeE(m) | m—my
no flush-out occurred
where j # [, q;(x, @) =- Y, MT,m;,x) .
TEE(mj)

q,(x,ci) = {)‘(Ti’ m;,x) if T, e E(m;) Amy L’ml
0 otherwise
where j#I, g;(x,ci) =0.

Define the probability density function of the sto-
chastic process M(71) ={(m(7),x(7)),7=0} as 7 (7,
m;, x) =oPr{m(r) =m;, x(7) <x}/ox and let 7(7,x)
=[m(r,m;,x),m; eS,] be arow vector of pdfs for all
the discrete states. We denote Dirac’s delta function as
8(x) and a projection operator (x’, i) as 6(x’, i) =

’
(X5 Xy ey X XL Xy s ey X)) -
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Theorem 1 For the FSPN model obtained by
converting an SWN model using the fore mentioned
approach, the probability density function vector

7(7,x) is governed by

om(7, %) R(ci) dm(7, %) _ (. x) O(x. D) +
ar peiePc ox;
Y 8x) [ m(r, 00x', ) Q(O(x', i), i) d]

The initial conditions are
(0, my,x) =86(x)
(0, m;,x) =0 Y m; ;émo}

No boundary conditions are needed.

We can directly get the response time distribution
we need by solving the above equations. Denote the fi-
nal discrete state as m,, the response time 7Ty distribu-
tion is
F_(Ty) =Pr(Ty<7) =Pr(The analyzed instance

has been completed at the time 7) =
Pr(The discrete state is m, at the time 7) = (7, m,,0)

4 Example

In this section we use the example shown in
Fig. 1 to illustrate the analysis technique presented in
section 3. We only consider one of the reducible sub-
systems detected by the algorithm proposed in Ref.
[8], which is composed of three places (p,, p;, p,)
and three transitions ( 7,, T,, T5) and redrawn in
Fig. 3.

Fig.3 A reducible submodel

In order to avoid the conflict between timed tran-
sitions T, and T5, two immediate transitions #, and
are added as in Fig. 4, which have the weights of
timed transitions 7, and T5( W(T,) and W(Ty)), re-
spectively. Thus the firing probabilities of the two
timed transitions remain the same.

n bs

Fig.4 The submodel being eliminated conflicts among
timed transitions
By applying the mapping method to the SWN
model shown in Fig. 4, in which only T, and 7, are as-
sumed to be general distributed transitions, we obtain

the FSPN model drawn in Fig. 2.

Eliminating the intangible states leads to the tan-
gible marking reachability graph shown in Fig. 5, in
which a discrete marking is denoted as m; = (#p,,

#pg, #py, #p,) .

mg = (1,0,0,0)
(1y) (Ts,ts)
) (Ts,14)
my =(0,1,0,0) my = (0,0,1,0)
(Ts)
ms3 = (0,0,0,1)

Fig.5 The tangible state reachability gragh

The only one non-zero entry of diagonal matrix
R(c3) is ry,(c3) =1; the only one non-zero entry of
diagonal matrix R(c4) is r,,(c4) =1. We denote the
fluid level vector by x = (x;, x,), then the three matri-
ces Q(x, @), O(x,c3) and Q(x, c4) are given by

a0 0 0
oeao| O “Ax) 00
0 0 A A
0 0 0 0
O(x,c3) =
0 M) oy I
W(T,) + W(Ty) 3 W(T,) + W(Ty)
0 0 0 0
0 0 0 0
0 0 0 0
0 00 0
Ax) 0 0 0
Q. o4) = 00 0
0 00 0

By solving the corresponding equations, we can
obtain the response time distribution of this submodel,
that is, 77(7, m;, 0) . For the whole analysis of the ex-
ample, the procedure proposed in Ref. [8] should be
followed.

5 Conclusion

In this paper we have presented an approach for
the evaluation of the response time probability distri-
bution of workflows, which is based on the FSPN for-
malism. In our approach, the SWN model of the ana-
lyzed workflow is first constructed, and then the SWN
model is converted into an FSPN model. The response
time distribution can be achieved upon the numerical
solution of the governing equations of the FSPN mod-
el. The computation effort of large workflow models
can be decreased efficiently by recursively using a net
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reduction technique. A simple example illustrates the
analysis procedure. Compared with other methods pro-
posed up to now, there is not any restriction on the
structure of workflow models and the processing times
of workflow tasks can be modeled by using arbitrary
probability distributions.

In addition, we recognize that the performance
evaluation approach presented here is better suited for
production workflows since they are more structured,
predictable, and repetitive. In the case of ad hoc work-
flows, the stochastic information that indicates the dy-
namic behavior of workflows can hardly be specified.
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