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of wavelet compressed images
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Abstract: To utilize residual redundancy to reduce the error induced by fading channels and decrease the
complexity of the field model to describe the probability structure for residual redundancy, a simplified
statistical model for residual redundancy and a low complexity joint source-channel decoding(JSCD) algorithm
are proposed. The complicated residual redundancy in wavelet compressed images is decomposed into several
independent 1-D probability check equations composed of Markov chains and it is regarded as a natural channel
code with a structure similar to the low density parity check (LDPC) code. A parallel sum-product ( SP) and
iterative JSCD algorithm is proposed. Simulation results show that the proposed JSCD algorithm can make full
use of residual redundancy in different directions to correct errors and improve the peak signal noise ratio
(PSNR) of the reconstructed image and reduce the complexity and delay of JSCD. The performance of JSCD is
more robust than the traditional separated encoding system with arithmetic coding in the same data rate.
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compressed image

In conventional communication systems for data,
speech and image etc., correlation in the source is
compressed as much as possible and a channel code has
to be added to protect digital data from errors induced
by noisy channels. This two-step method is supported
by Shannon’s separation theorem. However this theo-
rem does not hold in practical situations where the
power, bandwidth, delay and complexity of the system
are limited, because the popular variable-length source
coding, such as arithmetic coding is very sensitive to
channel errors and a single error blows up the whole
scheme. In Ref. [1], it was proposed that some redun-
dancy should be left in the source data so that it could
be tolerant of a few transmission errors. The redundan-
cy could be exploited by joint source-channel decoding
(JSCD) rather than being extracted by source enco-
ding. JSCD based on residual redundancy can provide a
more robust performance for transmission over noisy
channels.

The residual redundancy in the encoded source is
often regarded as first order or higher order Markov
chains (MC) "', Previous work assumed viewing the
combination of an encoded source with redundancy and
a noisy channel as a discrete hidden Markov model
(HMM) with transmitted indices corresponding to hid-
den states and received indices corresponding to ob-
servables produced within those states'* . But the prac-
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tical model of residual redundancy in encoded multi-
media source is more complex than the Markov chain.

In order to utilize the complicated residual redun-
dancy in WT compressed image with a lower complex-
ity, we developed a simple yet efficient probability
model composed of an independent 1-D probability
check equation (PCE) to describe the statistical charac-
ter and apply a novel JSCD scheme based on SP and
an iterative algorithm'” ~®.

The contribution of our work is: First, the high-di-
mensional state transition matrix (STM) can be separa-
ted into several 2-D STMs, so the complicated residual
redundancy of the WT compressed image is described
as some independent PCE in different directions similar
to the structure of the LDPC code. Secondly, with this
model, we develop a simple and parallel JSCD algo-
rithm based on the SP and iterative algorithm for quan-
tized WT compressed image coefficients corrupted by
noise.

Our results indicate that the proposed scheme is
robust, simple and efficient for image communication.
It provides significant benefits over the previous JSCD
of WT compressed image, not only in performance but
also in complexity.

1 Probability Model for Wavelet Com-
pressed Images
1.1 Hidden Markov random field (HMRF) model

for JSCD of WT coefficients
Wavelet decompositions have proven to be ex-
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tremely effective for image compression and provide
better compression quality than the traditionally used
JPEG algorithm. Similar to the Fourier transform, WT
is quite good at decorrelating the second order statistics
of natural signals. However, the WT cannot completely
decorrelate real-world signals and images—a residual
dependency structure always remains between the
wavelet coefficients. In WT domain of images, there
are 2-D spatial or more complicated dependencies
among quantized wavelet image coefficients which are
to be transmitted over noisy channels. MC fails to cap-
ture this a priori knowledge. The dependency within
subband is usually modeled as the Markov random
field (MRF) and dependencies across the scales can be
modeled as the Markov tree. In order to keep robust-
ness in communication over noisy channels, these re-
dundancies can not be removed by entropy coding. So
the quantized WT coefficients with field correlation
over noisy channels can be regarded as HMRF in
JSCD. But the prohibitive complexity of the HMRF
model limited in its application. A simplified hidden
Markov mesh random field (HMMRF) is addressed in
Ref. [4]. But only the neighbor states in horizontal and
vertical directions are considered in HMMRF and the
dependencies in the field cannot be represented perfect-
ly. Furthermore, the state transition probability matrix
of HMMREF is still a complicated 3-D matrix composed
of P(S,,/S._1.,»Si,_1),where k, [ are the position in-
dices of the state S. If the dependencies in all directions
of the integrated field are considered, the state transi-
tion probability matrix will be 5-D and becomes com-
putationally intractable.

1.2 Probability field model composed of 1-D PCE

for WT coefficients

The correlation of field within wavelet subband
exists in four directions, and there are eight neighbors
around one state. That is to say, every state to be deco-
ded is constrained by its eight neighbors in a probabili-
ty sense (see Fig. 1). We can represent it using the
Tanner graph (see Fig.2) which is often used in deco-
ding of LDPC. Every edge in the Tanner graph repre-
sents a local check equation. Fig. 2 is only a part of the
Tanner graph of all WT coefficients.

Algorithms that deal with complicated global
functions of many variables, such as the SP, often ex-
ploit the manner in which the given functions are fac-
torized into a product of “local” functions, each of
which depends on a subset of the variables. But the SP
algorithm is used in the cycle-free case theoretically.
We can apply it in the case of cycles by the following
iterative algorithm"”'. A message from a function node

Fig.2 Tanner graph of WT coefficients

to a variable node is the marginalization of the product
of all the messages incoming to the function node and
the function itself.

In the Tanner graph of LDPC, one bit is con-
strained by several independent check equations. If we
can separate the field model into independent separa-
ted 1-D local check equations, the statistical dependen-
cies in the field are regarded as the natural channel
code which possesses the structure similar to LDPC.
The SP and iterative algorithm used in LDPC deco-
ding can be adopted to decode source symbols with
redundancy to combat channel noise.

2 JSCD Using Sum-Product Algorithm

Assume that f; is a local function which depends
on x, and its neighbour state x; is shown in Fig. 1. S, is
the event that satisfies check equation f;. If and only if
S.,S,, ..., S 1s statistically independent, we have

P(S,, 85, .0 Sgo o/ {¥}) = HP(S/X(;, YD P(x/{y})

(D
That is to say, the posterior probability can be
computed as the product of eight factors. We are inter-
ested in developing the probability model composed of
eight independent functions which represent the de-
pendencies in different directions.
From Fig. 1, we obtain
P(xy/x,) = Z P(xo, X, x3/%,) =

X[, X3

2 P(x,, x3/%,) P(Xy/X,, X5, X3)  (2)

P

Assume that P(x,/x,, x,, x;) can be factorized
into P(x,/x,,x;) and Py(x,/x,). The first term repre-
sents the dependency between x, and the local domain
{x,,x;}, and the second represents the dependency be-
tween x, and x,, i. e.
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P(x,/x,) = zP(x,,x3/x2)P(x9/xl,xz,x3) =

X1, X3

N P(x,, x3/x,) P(Xo/X,, X3) Pp(xo/X,) (3)

X1, X3
For the given statistical probabilities P(x,/x,),
P(x,,x;/x,) and P(x,/x,, x;), the independent prob-
ability check equation in diagonal direction is given
by
Po(x/x,) = Ly (4)
2 P(x,, x,/x,) P(xy/X,, X3)

X1, X3

So we have
2 P(xy/ X\, %,,X3) = 2 P(xy/ X1, %) Pr(Xy/%,) =

X1, X9, X3 X1, X, X3

N P(xy/x,,X3) Y, Pp(xy/X,) (5)

P )

According to the above equations, we obtain an
independent PCE of P, (x,/x,) which represents sta-
tistical dependency between two neighbor states in di-
agonal direction. The PCE of P,;(x,/x,) in anti-diag-
onal direction is obtained in the same way. Because x,
is independent of {x;, x;, ..

z P(xy/X, X5,y ooy Xg) =

., Xo }, we can obtain

X[, X0 -y X
Z P(xg/ X5 X5, ooy Xg) ZPD(xg/xz) (6)

X1, X3, .eny X X
Likewise, we can factorize P(xy/X;, X35 «.., Xg)

into the dependencies in different directions,
Z P(Xog/ X5 Xy cuy Xg) =

X5 X2, ey Xg
2 P(xy/x,, x5, X5, X7) ZPD(xg/xz) .
X1, X3, X5, X7 Xy

N Po(x0/x,) Y, Po(Xe/x5) Y, Pr(Xo/x5) (7)

The posterior probability of the decoded state x,
can be expressed as
P(Xo/ Y15 Y25 oons o) & P(Y1, Vas ooy Yo/ %) P(X9) =
P(yis Yoy s Y5/ %) P(yy/X9) P(xg) o<
P(xg/ Y15 Y25 ooes Y5) P(9/ %) =

2 P(xg/ X, Xy5 ooy Xg)

g e X
P(x;, Xys ooy Xg/ V15 Yoo ooes ¥5) P(39/%9) =
Z P(x,, x5, x5, X;/%9) P(Xg) )

XL gy e Xg P(xy, X3, X5, X7)
Pr(xe/%,) P ap(Xo/X,) Py (X9/X6) P pp(X9/X5)
o X8/ V15 Yas oo V5) P(¥9/ %) (8)

To reduce the complexity of the model, we made
the assumption that the neighbor states in the horizon-

P(x,, x,, ..

tal and vertical directions are statistically independent
given the current state, i. e.,
P(x,, x5, X5, X;/Xy) =
P(x,/x9) P(x3/%9) P(x5/%9) P(X;/%5)  (9)
Hence, Eq. (8) can be rewritten as

P(xy/x,) P(xy/%5) P(xy/%x5) P(X9/%;)
xl,x;.,,rg P(x,, x5, X5, x;) P(x9) P(xg) P(X,)
P(x,) P(x;) P(x5) P(x;)
P(x,, x5, X5, x7) P(x9) P(xg) P(x,)
Pap(xX9/%,) Pr(Xo/Xg) P yp(X9/Xg) *
P(x,,Xyy cois X3/ V15 Yoy ooes Y5) P(Vo/Xg) (10)
The joint posterior probability distribution of
states {x,, x,, ..., X3} can be approached by the
product of state posterior probability updated by the it-
erative algorithm, so we have
P(x,) P(x,) P(x;) P(x;)
P(x,, x5, x5, %;)
P(X1/ Y15 Y5 oons Y ) P(X2/ Y1 Y0 ooy Yg) -

P(Xxg/ Y1, Y55 o0y V5) (11)
Because variables x,, x, ..., x, are separated in

Pr(xy/x,) *

P(X[, Xy ooy Xg/ Vs Vo oes Vo) =

formula (10), we can use the distributive law to sim-
plify the summations'”’. The posterior probability of
X, can be computed as

P(xg/x,-)P( y )
i=1,3,5.7 "7, P(xy) RARE Vs
H ZPD(x‘)/xj)P(xj/yl’y23 s Yg)
j=2,6 Xj
H ZPAD('x9/xk)P('xk/yl’y23 s Vg)
k=48 "x;
Y P(yo/%y) P(x5) (12)
X9
where y,, y,, ..., ¥, are the observations of x, x,, ...,

X, corrupted by the noisy channel. P(x,) is the a priori
probability of quantized index x,. P (y,/x;) is the
likelihood function. If we use f; to represent the local
check equation of x; and x,, Eq. (12) is denoted by

[

3 JSCD Using Markov Tree Dependency
between Subbands in Different Scales

Wavelet-based image compression enables multi-
resolution progressive reconstruction of the image at
the receiver. For the image transmission, progressive
image codec have been shown to be very useful be-
cause they can produce an increasing quality recon-
struction of the original image at the receiver using a
minimum amount of the channel capacity. Large/
small values of WT coefficients tend to propagate
through the scales of the quad-trees ( see Fig. 3)'*.
The inter-scale dependency of HL, LH and HH
subbands can be captured by the Markov tree model.
When WT coefficients of more than one scale are re-
ceived, our JSCD scheme can incorporate both inter-
scale dependency and intra-scale dependency simulta-
neously without increasing too much complexity.

Considered the inter-scale dependency, x, is con-
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Fig.3 Quad-tree organization of the wavelet coefficient
in one subband of the wavelet transform

strained by x,, to x,; besides x, to x,. Using the algo-
rithm mentioned above, we have

13
P(Xxy/ Y15 Yss ooy Yi3) = Hfz (13)
i<l

where f,, f5, ..., f; are defined as mentioned above,
and fy,, fi1, fin» fi; are computed as

fio = zPl(x9/x10)P(x10/y10,y11, e V13)

X10

fu = zPz(x9/x11)P(x11/Y1o’Y11’ v Vi3)
11

fio = Z Py(x/%15) P(X15/ Y105 Yi1s -5 Yi3)
*12

fis = z P(xg/%x3) P(X13/ Y105 Yits -ovs V13)

13
Given the probabilities from training data, P, (x,/

X10)» Py(xy/x;;) and Py(xy/x;,) are computed as

P(xy/x)
P (xy/x) =
Z PQxo/ Xy X1, X13) P(Xyy 5 X1, X13/ 1)
X11-X12:X13
P(x,/x
Py(xo/x,y) = (%o/x11)
2 P(xg/ X155 X13) P(X15, X13/X,)
£12: %13
P(x,/
P,(xy/x,,) = (%y/X15)
z P(xy/x13) P(x3/%),)

X3

The complexity of HMRF is in the order of N°T,
which is considered significantly high, where N is the
number of the states in the model and T is the total
number of the states in the encoded image source. The
complexity of HMMRF is reduced to N°T, and the
proposed scheme using the sum-product algorithm is
N’T only.

4 Simulation Results

Fig. 4 depicts reconstructions of the WT com-
pressed 512 x 512 Lenna image with various decoders
over a flat Rayleigh fading channel. The statistics
needed are obtained using ten images, which exclude
the test image Lenna. In Figs. 4(a) to (d), only the
subband of one scale is received and the intra-scale
field dependency is exploited in JSCD. The coefficients
are 4-bit Lloyd-max quantized at 0.25 bit/pixel. In
Figs.4(e) to (h), the subbands of two scales are re-
ceived, both inter-scale and intra-scale dependencies
are utilized with the sum-product JSCD. 2-bit quantiza-

(h)

Fig.4 “Lenna” reconstructed with different schemes, E,/
N, =3 dB. (a) Standard, 19.96 dB; (b) HMMREF, 23.35 dB; (c)
The SP JSCD, 24. 04 dB; (d) Arith . LDPC, 12. 13 dB; (e) Stand-

ard, 18.90 dB; (f) HMMREF, 20.42 dB; (g) The SP JSCD, 20. 85
dB; (h) Arith_ LDPC, 12. 10 dB

tion is used and results in a 0. 5 bit/pixel compression.

Fig. 5 compares PSNR vs. channel SNR curves
for various schemes. JSCD using the SP algorithm and
the HMMRF model outperforms the standard decoder
by about 2 to 4 dB. In comparison with HMMREF, we
find our SP algorithm obtained better performance with
lower complexity. Because the degree of the symbol to
be decoded in the Tanner graph is high, so the number
of iterations is small and two iterations are enough in
our simulation.

The Arith _ LDPC system uses arithmetic coded
WT coefficients with LDPC code protection at the
same data rate as the JSCD scheme. Due to the error
propagation of the entropy code, it is not suitable for
noisy channels.
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30 contrast to the traditional Tandem system of entropy
28 code and LDPC protection at the same data rate, it is
223 more robust and efficient when transmitting over a
% o] noisy and fading channel.
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