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Mathematical demonstration of correlation of optical prime code
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Abstract: Starting from the configuration of the optical prime code, a kind of key signature code for the optical

code-division multiple access (OCDMA) system, based on the linear congruence theory in the finite Galois

field, the correlation properties of the basic prime code, the extended prime code and the modified prime code

are mathematically analyzed, the distribution of cross-correlation values is given and the overlap area of “1”’s in

the case of periodically circularly shifting is indicated. It is mathematically demonstrated that the maximum

cross-correlation of the basic prime code is 2, and that of the extended prime code and the modified prime code

is 1. The integrated correlation analysis process is proposed. The signal-interfere ratio ( SIR) and the BER

performance of the systems employing different signature codes are calculated, respectively, and the

performances of OCDMA systems employing different signature codes mode are compared.
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The optical code-division multiple access ( OCD-
MA) system has many advantages, such as information
security, anti-jamming ability, permission of users to
add/drop randomly, coding in the optical domain, so it
is thought to be the most hopeful multiplexing techno-
logy in establishing all-optical networks. As a result, it
has received much attention and research in recent
years!' . To be practically applied in the network, the
OCDMA system needs a signature code with better
performance, which directly depends on the correlation
between the codewords. The optical prime code
(OPC), a kind of key signature code, was firstly
brought forward by Sharr et al. ", and from then on,
the construction schemes of the extended prime
code' ™™, the modified prime code'®”” and the 2"
prime code' ™ have been set up. Although one knows
that the maximum cross-correlation of the basic prime
code is 2, and that of the extended prime code and the
modified prime code is 1, this has not been mathemati-
cally demonstrated. Considering this, this paper will
start from the linear congruence theory in the finite Ga-
lois field, and mathematically analyze the correlation
properties of the basic prime code, the extended prime
code and the modified prime code to give an integrated
analysis process of prime code correlation. And then,
the performances of OCDMA systems employing dif-
ferent signature code modes are compared under the
same transmitting speed and the same code-length.
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1 Typical Configurations of Prime Code

1.1 Basic prime code (BPC)

According to the linear congruence theory in the
Galois field, the basic prime code can simply be ac-
quired. In the Galois field GF(p), where p is a prime
larger than 2, take S,;(j) = {i xj}(modp), i € GF(p),Jj
e GF(p), we get the prime sequence S, = {S,, S, ---»
Siis voes Sip_1) }', which can be used to construct the
basic prime code, whose code function C, = {C,, C,,
v Gy} (0=0,1, .., p=1),

C.(k) =1 Vik=S;+jp
C.(k) =0 V:ik#S, +jp}
where j =0,1,...,p-1.

The above expressions are employed to determine
the locations of “1”s in the (0, 1) sequence of the
prime code, the value of C,(k) denotes the position of
the k-th “1”. And then we acquire p basic prime codes
whose length L =p®, weight w = p, the maximum auto-
correlation ( AC in concision) side-lobe and crosscorre-
lation (CC in concision) are p —1 and 2, respectively.
1.2 Extended prime code (EPC)

Because the maximum CC value of the BPC, 2, is
not helpful to the performance of the system, Maric
et al. "' proposed a new prime code model by increas-
ing the code-length, i. e. , adding some “0”s in the (O,
1) sequence of the code, in order to improve the
CC"'. The code function they employed is

Ci(k) = (ik)(modp) +k(2p —1)
ke GF(p), ieGF(p) (2)

Eq. (2) means that p —1 “0”s are added to each

sub-sequence of the BPC, which will make the “1”s

(D
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more sparse in the whole (0, 1) sequence, and, there-
fore, the chance that two “1”’s have the same location is
cut down greatly, and CC is reduced. To code from
Eq. (2), the length L =p(2p - 1), weight w = p, the
maximum AC sidelobe is also p — 1, but the maximum
CC value is decreased from 2 to 1. Obviously, the im-
provement in the CC in the EPC bears a penalty of a
decrease in bit rate because of the longer code-length.
1.3 Modified prime code

Another disadvantage of the BPC is that the maxi-
mum number of users it can support is just the same as
the prime p. If we want to contain a large number of
simultaneous users, the p must be large enough, which
leads to the AC peak ( proportioning to p*) being much
higher than is needed. For better power efficiency, we
can remove some “1”s in the (0, 1) sequence to lower
the AC peak. The code function of MPC'"is

C,(j) =(ib)) (modp) +b;p

Je{0,1,...,w-1}, b,eGF(p), ieGF(p) (3)

Eq. (3) is equivalent to drawing out p —w “1”’s in
the (0, 1) sequence of the basic prime code.

2 Correlation Analysis for Prime Codes

To optical signature code with length L, weight
w, the AC sidelobe between a code and its periodically
cyclical shifting satisfies (4a), and the CC between dif-
ferent codes satisfies (4b), where A, and A, are the
maximum AC sidelobe and the maximum CC value, re-

spectively.
L-1

z XiXig, < A,
izo
L-1

Z XYior < Ac
i=0
where @ denotes module L addition. If the code is de-
noted by vector, the above two constraints can be ex-
pressed as
max{C, - C7 | re(1,2,...,L -1}, ie GF(p)}<Aa,
(4c)
,L=1}, i#j}<<A,
(4d)
where C; - C] means the scalar product of vectors C;

Vxe Cr#0 (4a)

Vx,y e C,x#y (4b)

max{C; - C] lre{0,1, ...

and C}, and C] denotes the 7-cyclical shifting of code
C,.

In the asynchronous OCDMA system, the AC
sidelobe comes from the interference between different
chips of the same code, and CC comes from different
codes (users). At the OCDMA transmitter and receiv-
er, CC is the main source of the system BER. If the
maximum CC value, A, is used to calculate the system
BER, the result will not be accurate, because the maxi-
mum CC value appears at only a few r-shiftings, not

all the shiftings. Meanwhile, the apparent probability

of the maximum CC value is far less than that of other
correlation values. For example, as for the basic prime
code, the maximum CC is 2, the apparent probability
of which is much less than that of CC, 1 or CC, 0. This
will be identified in the following section.
2.1 Basic model for code correlation

From (1), we know that the (0, 1) sequence of
the code can be evenly divided into p subsequences
(sub in concision), each of which has just one “1”. To
the i-th code, C,, of the code family, the location scope
of all p chips of the k-th (O<<k<p —1) sub are from
kp to (k +1)p — 1. Meanwhile, we know the location of
the only “1” of this sub (ik) (modp) +kp, ke GF(p), i
e GF (p), which means the “1” locates at the
(ik) (modp) -th in the k-th sub relatively. For another
code, C(0<sj<p -1, j#i), chips between kp — 7 and
(k+1)p —1 —7 will move to the k-th sub after r-cycli-
cal shifting, as shown in Fig. 1. Let r =ap + b(0<b<p
—1), the chips’ location is from (k-a-1)p +(p - b)
to (k—a)p +(p —b —1) before shifting, shown as the
shadowed area. If there are “1”s in the k-th sub, they
must locate in the shadowed area before shifting. If the
“1” originally locates in the (k —a - 1) -th sub, its rela-
tive position, (j(k —a —1)) (modp) must satisfy

(j(k=a~-1))(modp) =p - b (5)
(k-a=-1)-th (k- a)-th foth
C section section section
G N
7 i —~—— Jk-th
(k-a-1)p (k-a)p section

+p-b +p-b-1
Fig.1 Schematic of code periodically cyclical shifting

After 7 =ap + b cyclical shifting, its relative position in
the k-th sub is
(j(k=a—-1))(modp) +(k-a-1)p+(ap +b) —kp =
(j(k—-a—-1))(modp) +b -p (6)
On the other hand, if the “1” comes from (k —a) -
th sub, its relative position (j(k —a))(modp) must sat-
isfy
(j(k -a))(modp) <p —b -1 (7)
After 7 =ap + b cyclical shifting, its relative position in
the k-th sub is
(j(k —a))(modp) +(k-a)p +(ap +b) —kp =
(j(k —a))(modp) +b (8)
According to the definition of (1), the CC be-
tween codes C; and C; means that some “1”’s of the two
codes have the same position after cyclical shifting,
i. e., the following equation must be satisfied
(j(k—a—-1))(modp) +b —p = (ik)(modp) (9)
or
(j(k —a))(modp) +b = (ik)(modp)  (10)
Egs. (9) and (10) are the linear congruence equa-
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tions in the Galois field, whose solutions are

k=w (11)
]—l
k:f";% (12)

where &, [ are integers. The values of k decided by
(11) and (12) must satisfy the conditions of (5) and
(7), respectively; otherwise, the solution is invalid.
Obviously, if a, b make both (11) and (12) have no
integer solution, the CC between codes C; and C; is ze-
ro at such a shifting 7 = ap + b. Similarly, if only one
of the equations has an integer solution, CC is 1, and if
both equations have integer solutions, CC is 2.

Tab. 1 gives the variation of the CC between
codes C, and C5 in GF(7) versus shifting 7 =ap + b.
Tab. 2 shows the subsequences k in which the “1”s of
the two codes have the same location.

Tab.1 CC of C; and C; vs. shifting 7 =ap +b

b
¢ o 1 2 3 4 5 6
0 1 1 2 1 0 1 1
1 1 1 0 2 2 1 0
2 1 2 1 0 0 1 2
3 1 0 1 2 2 0 1
4 1 1 1 0 1 2 1
5 1 1 2 2 0 0 1
6 1 1 0 0 2 2 1

Tab.2 Overlapping area of “1”s, k vs. shifting 7 =ap +b

b
¢ o 1 2 3 4 5 6
0 0 3 5,6 2 — 0 3
1 6 2 — 0,1 3.4 6 —
2 5 0,1 4 — — 5 1,2
3 4 — 3 5,6 1,2 — 0
4 3 6 2 — 0 3,4 6
5 2 5 0,1 3,4 — — 5
6 1 4 — — 5,6 1,2 4

From Tabs. 1 and 2, we can see that CC varies
with different shiftings 7; meanwhile, different CC val-
ues have different appearing probabilities.

2.2 Correlation property of basic prime code

A =2 means that there are just 2 “hit”s that hap-
pened between two codes at some cyclical shifting 7. In
this case, the distance between the two “1”s in one
code equals the distance between two “1”s in another
code, here “distance” means the position difference.
From definition (1), the distance between two adjacent
“1”s in code C, is
d=((i(k+1))(modp) +(k +1)p) —((ik)(modp) +kp)

(13)

According to the characteristics of the finite con-
gruence equation, we consider the distance in three ca-
ses:

(D When i(k +1) <mp, we have d =p +1;

) When ik <mp<i(k +1),we get d=p +i —p =i,

(3 When ik=mp, we have d =p +1i.

Thus, the distance of adjacent “1”s in C, is either
p +i or i. Considering the periodically cyclical shift-
ing, the distance p + i appears p — i times, and i, i
times. As a result, we obtain the distances between
any two “1”s in the code C,.
Osm<p-i,0<sn<i

(14)

where m and n are integers, cannot be zero, cannot be
the maximum simultaneously. Otherwise, the distance
will be zero or L. When the CC value between codes

d =m(p +i) +ni

m,n

C,and C;is 2, there are m, n,m’, n’ satisfying d . =
dfn,,,,,i. e.,
(m'(p +j) +n'j)(modL) =(m(p +1i) +ni) (modL)
(15)
m,_m:(m+n)l—(m +n)j _li-lj
p p

O<l=m+n<p, O<l'=m"+n"<p (16)

When i =0 or j =0, both [’j and /i are aliquant by

p, therefore, no m, n, m', n' can satisfy (15). In such a
case, CC is 1. When i##;#0, because min(l’j) =1, we
know max(%i) =(p - 1)*. From Eq. (16), we have

max(m’ —m) :(p_lp)z_lzp—z (17)

In the above case, there must be m, n, m’, n’ sat-
isfying (15), which means the CC value between C,
and C; is 2 in some 7-shiftings.

The maximum CC value of the basic prime code
family is 2,1i.e.,in (4), A, =2. However, the proba-
bility of A = A is far less than that of A =1 or A =0.
Tab. 3 shows the appearing times of A =2 in the
whole shifting process (0 <7<48) of the prime code
family acquired in GF(7).

Tab.3 Appearing times of A =2 between any two

prime codes in GF(7)

. J =
"1 2 3 4 s 6 ,-:;,-;,-C”Cf
I — 10 10 6 12 12 50
> 10 — 6 12 6 12 46
310 6 — 10 12 6 44
4 6 1210 — 6 10 44
5 12 6 126 — 10 46
6 12 12 6 10 10 — 50
p-1 p-l
Yy ¢ 280
2

2.3 Correlation property of extended prime code

According to Eq. (2), we have the distance be-
tween adjacent “1”’s in the (0, 1) sequence of the ex-
tended prime code,
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d=((i(k+1))(modp) +(k+1)(2p-1)) -
(ik) (modp) +k(2p - 1)

There are three cases as follows:

(D When i(k +1) <mp, we have d =2p —1 +1i;

@) When ik <mp<i(k+1),we getd=2p -1 +i
-p=p-1l+i

3 When ik=mp, we have d =2p -1 +1i.

Thus, the distance of adjacent “1”s in C, is either

(18)

2p -1 +iorp -1 +i. Considering the periodically cy-
clical shifting, the distance 2p — 1 + i appears p — i
times, and p — 1 + i, i times. As a result, we obtain the
distances between any two “1”’s in the code C,
d,,=m(2p-1+i) +n(p-1+i)
Osm<p-i, 0sn<i (19)
where m and n are integers, cannot be zero and cannot
be the maximum simultaneously. Otherwise, the dis-
tance will be zero or L. When the CC value between
codes C; and C; is 2, then there are m, n, m’, n’ satis-
fying &, , =d,, ,.i.e.,
(m'(2p=1+j) +n'(p-1+)))(modL) =

(m(2p-1+i) +n(p-1+i))(modL) (20)

(2m’ +n') - (2m +n) == ;l’(j‘l)

O<l=m+n<p, O<l'=m"+n'<p (21)

When i=1orj=1,both I'(j-1) and I(i-1)

are aliquant by p, therefore, no m, n, m', n' can satisfy

(20). In such a case, CC is 1. When i #j # 1,

max(l(i-1) -I'(j-1)) =(p-1)(p-2) -1=p° -
3p+1,i.e.,

max((2m’ +n') —(2m +n)) =P

2
-3p+1 (22)
p

In the above case, there are no m, n, m’, n’ satis-
fying (22), which means the CC value between C,;
and C; is at most 1 in any 7-shifting.

According to the analysis of sections 2.2 and
2.3, we know that the CC property of the extended
prime code is better than that of the basic prime code,
but the length of the extended code is longer than that
of the basic prime code.

As for the modified prime code defined by (3),
w < p, L =p*, which can be acquired by taking out p
—w “1”s from the basic prime code. The positions of
the left “1”s have not been changed. Therefore, the
CC property of the modified prime code is the same as
that of the basic prime code. However, the AC proper-
ty of the former is better than that of the latter.

3 (alculation of BER from Code Correlation

To analyze the system BER induced from multi-
ple user interference, we should first analyze the distri-

bution of the different CC values. That is to say that
the influence of different CC values (A, € {0, 1, ...,
A.}) to system BER is different. Let ¢g,, denote the ap-
pearing probabilities of A,,, we obtain the average CC
value

Ac
7\ =q() 'O +ql '1 +q2 .2 +"'q)\CAC = zqm/\m
m=0

(23)
where A denotes the average probability that a “1” in
a code “hits” a “1” in another code. To the codes with
length L and weight w, each code has w “1”’s uniform-
ly. Thus, the probability of a certain “1” in the first
code “hits” the “1”’s in the second code is w/L. If the
system employs the on-off key modulation mode, both
data bits 0 and 1 are transmitted with equal probabili-
ty, 1/2. When a user transmits data 0, there will be no
“hit” happening. Therefore, the practical “hit” proba-
bility is w/2L. Considering these, the “hit” probabili-
ty that the w “1”’s in the first code “hit” w “1”’s in the
second code is A =w’/2L.

From the prime code, we can easily know A. The
values of ¢,, g,, and g, can be derived from Ref.
[10]. Then we have the distribution variance of corre-
lation values, o~ =5/12 = 1/(6p) —1/(3p>) for the
basic prime code and ¢ =3/16 + 1/(8(2p - 1)) -
1/(16(2p —1)?) for the extended prime code. Suppo-
sing that there are total K simultaneous users, a special
user received the interference from other K — 1 users is
(K -1)c°, the signal-interference ratios Rgy , of the
basic prime code and Ry ; of the extended prime
code, are respectively:

2
w

R s K-t

2

P . (24)
2K -1)(5/12 = 1/(6p) —1/(3p*))
_ (3 11
Rawe =50k —1) (16+8(2p—1) 16(2p_1)2)
(25)

In the DS-OCDMA system, in order to satisfy the
BER requirement, the p used in code designing is
much larger than 1(normally 37 or 41). In this case,

we have
o 12pr 1.2p
Rsiw.» T10(K-1)  K-1 (26)
8yt 2.67p
RS[R,E_3(K_1) - K—l (27)

Therefore, we obtain the system BER induced by
cross-correlation between codes as

R SR
Boer s =<1>( - /%) =0.5 +0.Serf( _stm) -
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0.5 +0. Serf( ~0.548 %) (28)

BBER.E_d)( - ) ) —0.5+0.561‘f( _2)_
- L

0.5 +0.5erf( 0.817 m) (29)

where the variation function
erf(x) = Lrexp( - ﬁ) dt
Jmdo 2

Fig. 2 to Fig. 5 give Rgyg 5, Byer g, Rsp e and
Ryer g vs. the number of simultaneous users of the
OCDMA system with the basic prime code or with the
extended prime code, respectively. According to Fig. 2
to Fig. 5, we can see that when the prime number p
increases, the system SIR increases soon and BER de-
creases fast, which indicates that the greater p is, the
better the system performance. But the greater p will
increase the code-length, which will depress the bit
rate. So, for properly choosing p, we should make
overall plans and take all factors into consideration.

10
p:
1—17; 5—31;
100 [ 2—19; 6—37;
3—23; 7—41;
= 4—29; 8—43
100 [
8
5 6 7
3 4
1 2
101 | | 1 | | | | 1 ]
0 5 10 15 20 25 30 35 40 45
K
Fig.2 SIR performance of prime code
1072
1
1074 Z3
5
1076
8
1078
e -0
= 10 :
10-2r 1—17; 5—31;
10-4F 2—19; 6—37;
3—23; 7—41;
10-1F 4—29; 8—43
10-18 | | ] | | | | ] ]
0 5 10 15 20 25 30 35 40 45

K
Fig.3 BER performance of prime code

According to Figs. 2 to 5, as for the same prime
code p, we can directly conclude that the SIR and the
BER performance of the extended code (p(2p - 1),
p,p —1,1) are far better than those of the basic prime
code (p°, p, p —1,2). However, the code-length of the
former is about twice that of the latter, which indicates

10*
p:
1—17; 5—31;
10° 2—19; 6—37;
3—23; 7—41;
& 4—29; 8—43
wn
8
10? 5 6
3 4
12
10055

10 15 20 25 30 35 40 45
K
Fig.4 SIR performance of extended prime code

102 P*
1—17; 5—31; 7—41;
1074 | 2—19; 6—37; 8—43

10—6 L
1078}
% 10-0
10—12 F
10471
10711 15 45 6 7
107"

5 10 15 20 25 30 35 40 45

K
Fig.5 BER performance of extended prime code

that the improvement in performance is under the pen-
alty of a decrease in bit rate.

With the same code-length, the code weight of
EPC is about 0. 707 time of that of BPC. We can get
the comparison of SIR and BER between the EPC and
BPC, according to Egs. (26) to (29). The comparison
results are shown in Fig. 6 and Fig. 7.

103"55 « EPC
o888, e BPC
&0 f °;L‘s;;§fa§§§§§;m;‘“
710 S8y, "daag, 00a5aiti8taany,, L =1849
°=a:6:g;= e85, g L =1369
L=529
10! e
0 5 10 15 20 25 30 35 40 45

K
Fig.6 SIR comparison between EPC and BPC

From Fig. 7, we find that the BER of the OCD-
MA system with the extended prime code is improved
by one order compared to the BPC; therefore, we can
say that the extended prime code has a better perform-
ance than the basic prime code.

Finally, it should be pointed out that one disad-
vantage of both the EPC and the BPC is that they have
a high autocorrelation value, which leads to the quite
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1072

10741 022 L =529

0 o222t ves L =961

10°°r Lo2 eenaEEY aeo=1360

0-s S8 eniet eenlant’ LeeetliL=1849

E 107101 N

1072 et W e « EPC
R ~ BpC

10—14- a °a °, nn‘.

10—16 | ° os . a nAA

1078

0 5 10 15 20 25 30 35 40 45
K
Fig.7 BER comparison between EPC and BPC

low weight-autocorrelation ratio w/A, =p/(p —1).
4 Conclusion

The performance of the optical code family de-
pends on the BER induced by multiple access interfer-
ence, which is mainly based on the cross-correlation
between signature codes. The optical prime code is
one kind of basic signature code, and the correlation
property of its code function directly determines the
code performance. Starting from the linear congru-
ence theory in the finite Galois field, this paper mathe-
matically analyzes the correlation properties of the
basic prime code, the extended prime code and the
modified prime code, and then calculates the system
SIR and BER induced by multiple access interference
according to the distribution of the correlation values.
The performance of OCDMA systems with the basic
or extended prime codes are compared. The result in-
dicates that the system performance with the EPC is
better than that with the BPC under the same transmit-
ting data rate.
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