Journal of Southeast University (English Edition)

Vol. 22, No. 2, pp. 176 — 179

June 2006 ISSN 1003—7985

Fast algorithm for constructing neighbor-joining phylogenetic trees

Chen Ningtao'

Wang Nengchao®

Shi Baochang®

(" School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China)

(* Parallel Computing Institute, Huazhong University of Science and Technology, Wuhan 430074, China)

Abstract: To improve the performance of Saitou and Nei’s algorithm (SN) and Studier and Keppler’s improved

algorithm (SK) for constructing neighbor-joining phylogenetic trees and reduce the time complexity of the

computation, a fast algorithm is proposed. The proposed algorithm includes three techniques. First, a linear array

A[N] is introduced to store the sum of every row of the distance matrix (the same as SK), which can eliminate

many repeated computations. Secondly, the value of A[i] is computed only once at the beginning of the

algorithm, and is updated by three elements in the iteration. Thirdly, a very compact formula for the sum of all

the branch lengths of operational taxonomic units (OTUs) i and j is designed, and the correctness of the formula

is proved. The experimental results show that the proposed algorithm is from tens to hundreds times faster than

SN and roughly two times faster than SK when N increases, constructing a tree with 2 000 OTUs in 3 min on a

current desktop computer. To earn the time with the cost of the space and reduce the computations in the inner-

most loop are the basic solutions for algorithms with many loops.

Key words: phylogenetic tree; neighbor-joining method; fast algorithm; progressive multiple alignment

Phylogenetic trees are used to express the evolu-
tionary history of a group of organisms'''. Construc-
tion of an evolutionary history for a set of contempo-
rary taxa based on their pairwise distance is NP-com-
plete for various optimality criteria'”*'. Many greedy
heuristics have been proposed, among which, the
neighbor-joining (NJ) method" ™ is widely used by
molecular biologists due to its efficiency and simplici-
ty. Especially, the NJ method is very popular in multi-
ple sequence alignment (MSA) because it is applica-
ble to any type of evolutionary distance data. The out-
put of the NJ method is used to direct the grouping of
sequences during the multiple alignment process. Most
recent famous MSA software such as CLUSTAL
W' T-Coffee’™, MAFFT"', MUSCLE"" etc. use
the NJ method as the main option. But the time com-
plexity of the original NJ algorithm is O(N’), where
N is the number of operational taxonomic units
(OTUs). For a part of this reason, MUSCLE and
MAFFT also use the UPGMA"" to construct trees
since the time complexity of it is only O(N’). Howev-
er, the UPGMA does not build the true evolutionary
tree to guide a progressive alignment in line with bio-
logical expectations though it may sometimes get a
higher SP score than the NJ method'"”. Studier and

Received 2005-09-19.

Foundation item: The National Natural Science Foundation of China
(No. 60473015) .

Biographies: Chen Ningtao (1976—), male, graduate; Shi Baochang
(corresponding author), male, doctor, professor, sbchust0382 @ sina.
com.

Keppler' succeeded in reducing the time complexity
of NJ from O(N’) to O(N?), but there is still space
to reduce the executing time for the NJ algorithm. The
time complexity of the proposed algorithm in this pa-
per is also O(N’); however, it is roughly two times
faster than SK on sufficient data sets.

1 NJ Algorithm

Neighbor-joining seeks to build a tree which
minimizes the sum of all branch lengths; i. e., it a-
dopts the minimum-evolution (ME) criterion. Many
studies have corroborated NJ’s performance in recon-
structing correct evolutionary trees. For small numbers
of taxa, NJ solutions are likely to be identical to the
optimal ME tree'®. Neighbor-joining begins with a
star tree, then iteratively finds the nearest neighboring
pair (i. e., the pair that induces a tree of the minimum
sum of branch lengths) among all possible pairs of
nodes (both internal and external) . The nearest pair is
then clustered into a new internal node, and the dis-
tances of this node to the rest of the nodes in the tree
are computed and used in later iterations. The algo-
rithm terminates when N —2 internal nodes have been
inserted into the tree (i.e., when the star tree is fully
resolved into a binary tree). The framework of NI is
defined by three components: the criterion used to se-
lect pairs of nodes; the formula used to reduce the dis-
tance matrix; and the branch length estimation formu-
la. Fig. 1 shows an example of the NJ tree, which indi-
cates the evolutionary relationship of eight OTUs and

Fast algorithm for constructing neighbor-joining phylogenetic trees 177

which is an unrooted tree. The rectangles denote the
terminal nodes or OTUs and the circles denote the in-
ternal nodes, respectively. The numbers beside the
rectangles denote OTUs; the numbers beside the cir-
cles denote the orders that OTUs are inserted into the
tree, and the data above the lines are the branch
lengths of two neighbors. It is obvious that OTUs 1
and 2 are clustered first, generating a new combined
OTU. The branch lengths between 1 and the new OTU
and 2 and the new OTU are 5 and 2, respectively. Af-
ter OTUs 7 and 8 are clustered, there are only two
OTUs, and they are clustered. The tree is built now.
The NJ algorithm is described briefly as follows.

8
’l{6
27

Fig.1 Neighbor-joining tree

Define the following symbols: D; and L, as the
distance between OTUs i and j and the branch length
between nodes a and b, respectively; S; as the sum of
all the branch lengths of OTUs i and j. Note that D is
a symmetric square matrix but not a triangle matrix as

S.

N-1
1 1
;)(D,.k +D,) + oDty _2';1)%
(D
where i =0,1, ..., N-2; j=i+1,i+2,....N-1; k,
m,n#i,j.
S; is the sum of the least-squares estimates of

1
Si =2V -2

branch lengths'*!. At every iterative step, the minimum
§,; indicates that nodes i and j are the nearest evolu-
tionary neighbors.

Suppose that OTUs i and j are the neighbors to
be joined in the tree. They are clustered as a new one,
denoted by X. The distance between this combined
OTU X and another OTU £ is given by

D, +Djk ..
W= k=0,1, ..., N-1;k#i,j (2)
L, and L, are estimated by
D,+D,-D, D,+D,-D,
LiX =4 2Z jZ; L_,‘x = 2]Z Z (3)
N-1 N-1

where D, = Y D,/(N -2),D,, = ¥ D;/(N -2),
k=0 k=0

k # i,j; Z represents a group of OTUs including all
but i and j, and D, and D, are the distances between i
and Z and j and Z, respectively. Finally, OTUs i and j
are deleted from the current OTUs lists, X is added,
and the number of current OTUs reduces one, and a

new iteration starts.
The pseudo code of the NJ algorithm is described

as follows:
Input: N is the number of OTUs, D; is the distance between any
pair OTUs, and D;; is set to infinity.
Output: NJ tree.
1 While N >2 do
1.1 Fori=0to N-1 do
1.2 Forj=i+1 to N do
1.2.1 Compute S; according to Eq. (1).
.3 Search the minimum S;; to get neighbors i and j.
.4 OTUs i and j are clustered as a new OTU X.
.5 Compute Dy, according to Eq. (2).

.7 Delete OTUs i and j, and add X to current OTU lists.
.8 N=N-1.
End of while
2 Cluster the last two OTUs.

2 Time Complexity Analysis of NJ Algorithm

1
1
1
1. 6 Compute branch lengths L;x and Ly according to Eq. (3).
1
1

According to the NJ’s pseudo code, the time
complexity of the outer most loop is O(N); lines 1. 1
and 1.2 are O(N*); line 1.3 is O(N*); line 1.4 is
O(1); line 1.5 is O(N); line 1.6 is O(N); line 1.7
is O(1) and line 2 is O(N). As for line 1.2. 1, be-
cause Eq. (1) comprises three parts, we will analyze
the time complexity of each separately. The first part
contributes the time O(N), the second is O(1) and the
third is O(N*) because we should consider all the m
and n but i and j. So the most expensive step is Eq.
(1), which induces that the total time of NJ is O(N°)
if we compute it directly. So the key point to optimize
the NJ algorithm is to optimize the computation of
Eq. (1).

For the three parts of Eq. (1), there are in fact
many repeated computations of the same data in parts 1
and 3. For example, in part 1, when computing S,,, D,
is added; when computing S,,, D, is also added. In part
3, when computing S,,, D, is added; when computing
S5, D, is also added. In other words, there are close
relationships between the computations of S;. Though
the NJ algorithm should compute the triangle matrix S
iteratively to search the nearest neighbors, it is fortu-
nate that the computations of S, only need the distance
matrix D, which stimulates us to design the fast algo-
rithm to avoid the repeated computations in D.

3 Fast Algorithm for Constructing NJ Tree

Our motivation is very simple: we try to reduce
the computations in the inner-most loop. There are
the most expensive computations for the time com-
plexity of the whole algorithm. Pre-processing outside
the double loops of lines 1.1 to 1.2 of the pseudo
code has been done, the results of which are used for
the computations of S;(line 1.2.1).

178 Chen Ningtao, Wang Nengchao, and Shi Baochang

Define a linear array A[N] and a buffer ¢, the
former is used to store the sum of every row of D and
the latter to store all the sum of D, then

N-1
A, =YD, j#i (4)
= N-1
r= Y A (5)
i=0
Define the first and third parts of S jas v and w,
of A, +A;, -2D,
YT TaN-2) (6)
df t—2(A, +A) +2D,
o= 2(N—]2) : 7
Then
1 t_Ai _Aj 1
SU=V+7DU+W=W+?DU (8)

Compared with Eq. (1), this modified Eq. (8) is
simpler and more efficient. To compute A; and ¢, the
time complexities are O(N°) and O(N), respectively.
But their computation is parallel to the double loops of
lines 1.1 to 1.2 of the pseudo code of the NI algo-
rithm, which does not increase the total time complexi-
ty. And the time complexity of Eq. (8) is only O(1).

Proof (D For v,
N-1 N-1
Ai _ng = ZD;k(k # 1) _Dg,' = ZDik(k #* isj)
k=0 k=0
N-1 N-1

A =Dy = 3 Dy(k #j) =Dy = 3 Dylk #ii))

(A, -D,) +(A, -D,) =A, +A, 2D, =

N-1

z (Dy +Djk)(k # 1,])
k=0

2 For w, A + A denotes the sum of rows and
columns of i and j, respectively; 7 -2(A; +A;) +2D;
denotes the sum of the remaining elements of D ex-
cept those elements related to i and j; 2D is added
because D; and D), are deleted twice from rows and
columns of i and j. Then

t -2(A, +A) +2D; = ¥ D,, mn#ij

m<n

Considering Eq. (8) again, ¢t and N are constants
for every S,.j at each iteration, so they need not be
computed to search the minimum S, and the constant
factor 1/2 is also ignored, then we can get a more
simple form of S;(Eq. (9)) compared with Eq. (8).

N i = D i ﬁ (9)

Eq. (9) does not include ¢, which implies that we
need not compute the sum of A; any more as in Eq.
(5) iteratively. This saves O(N) time computation.

Considering the distance matrix D, suppose that
OTUs i* and j* are the neighbors to be joined in the
tree, then the two rows and columns of i* and j* are
deleted from D, and a new row and column (denoted

by X) are added. D,, is computed according to Eq.
(2). In fact, we need not compute A, again as in Eq.
(4), because most values of the remaining A, are un-
changed between every two successive iteration steps.
A, can be computed in O(N) time. For the remaining
A;,only D;. and D. are deleted, and D,y is added. So
A=A, -D;. -D;. +Dy (10)
which saves O(N°) time for each iteration. Then Eq.
(3) can be rewritten as
p, ="l p AD (11)
“- N=-2" iz N-2
which saves O(N) time compared with Eq. (3). Now

the new algorithm is described as follows:
Compute A; according to Eq. (4).
While N >2 do
Fori=0to N-1 do
Forj=i+1 to N do

Compute S;; according to Eq. (9).
Search the minimum S; to get neighbors i * and j* .
OTUs i* and j* are clustered as a new OTU X.
Compute Dy, according to Eq. (2).
Compute branch lengths L,y and Ly according to Egs. (3) and
(11).
Delete OTUs i * and j*, and add X to current OTU lists.
Update the remaining A; according to Eq. (10) and compute Ay.
N=N-1.
End of while
Cluster the last two OTUs.
The time complexity of the new algorithm is

O(N).
4 Results and Discussion

Studies are performed on a main frequency 2. 4
GHz Intel Celeron personal computer (256 MB RAM)
with a Windows 2000 operating system. The distance
matrix D is generated by three methods: (D) Global
pairwise alignments by dynamic programming, which
is the slowest but the most accurate; (2) K-mer dis-
tance''”'”!
wise distance estimation; (3) Random generation by

computing pseudo numbers, which is just to provide a

, which is linear time complexity for pair-

fast method to generate data.

To prove the correctness and high efficiency of
our algorithm, a comparison has been made with Saitou
and Nei’s algorithm (SN)'* and Studier and Keppler’s
algorithm (SK)"™' on sufficient datasets. The three al-
gorithms can get the same results for the same input,
but our algorithm is from tens to hundreds times faster
than SN and roughly two times faster than SK when N
increases. Fig. 2 shows the comparison of the three al-
gorithms. Our algorithm is able to construct the tree
with 2 000 OTUs in 3 min on a current desktop com-
puter. As for Studier and Keppler’s algorithm"', we
should point out that they introduced a similar tech-

Fast algorithm for constructing neighbor-joining phylogenetic trees 179

nique compared to ours, the formula of S is as
S;=D;(N-2) —(A, +A)) (12)

However they calculated ¢ and all the A, iteratively, for

which there are many repeated computations as we

have shown in section 3.
3.5r

3.0F
2.5
2.0

1.5

CPU time/s

1.0 |
0.51

1 | |]
0 0 100 200 300 400 500

Number of OTUs
Fig.2 Comparison of the three algorithms

5 Conclusion

In this paper, a fast algorithm for constructing
neighbor-joining phylogenetic trees has been devel-
oped, which is O(N’) time complexity compared with
O(N’) of SN, the same as SK, while faster than the
latter. The key point of our algorithm is to reduce the
repeated computations. Our work serves as an example
of how to reduce the time complexity when there are
many loops in programs for some algorithms. We
should try to reduce the computations in the inner-
most loop. This may be done by studying the relation-
ships between the elements to be computed.

References

[1] Yang C, Khuri S. PTC: an interactive tool for phylogenetic
tree construction [A]. In: IEEE Proceedings of the Com-

putational Systems Bioinformatics[C] . California: Stanford Uni-
versity, 2003, 8: 476 —477.

[2] Foulds L R, Graham R L. The sterner problem in phyloge-
ny is NP-complete [J]. Advances Appl Math, 1982,3:43 —
49.

[3] Day W. Computational complexity of inferring phylogenies

from dissimilarity matrices [J]. Bull Math Biol, 1987, 49

(4):461 —467.

Saitou N, Nei M. The neighbor-joining method: a new
method for reconstructing phylogenetic trees [J]. Mol Biol
Evol, 1987,4(4):406 —425.

[5] Studier J A, Keppler K J. A note on the neighbor-joining
algorithm of Saitou and Nei [J]. Mol Biol Evol, 1988, 5
(6):729 -731.

[6] Saitou N, Imanishi T. Relative efficiencies of the Fitch-
Margoliash, maximum-parsimony, maximum-likelihood,
minimum-evolution, and neighbor-joining methods of phy-
logenetic tree construction in obtaining the correct tree
[J]. Mol Biol Evol,1989,6(5):514 —525.

[7] Thompson J D, Higgins D G, Gibson T J. CLUSTAL W:
improving the sensitivity of progressive multiple sequence
alignment through sequence weighting, position-specific
gap penalties and weight matrix choice [J]. Nucleic Acids
Res, 1994,22(22): 4673 —4680.

[8] Notredame C, Higgins D G, Heringa J. T-Coffee: a novel
method for fast and accurate multiple sequence alignment
[J].J Mol Biol, 2000, 302(1):205 —217.

[9] Katoh K, Misawa K, Kuma K, et al. MAFFT: a novel
method for rapid multiple sequence alignment based on
fast Fourier transform [J]. Nucleic Acids Res, 2002, 30
(14):3059 —3066.

[10] Edgar R C. MUSCLE: multiple sequence alignment with
high accuracy and high throughput [J]. Nucleic Acids
Res,2004,32(5):1792 —1797.

[11] Sneath P H A, Sokal R R. Numerical taxonomy [M]. San
Francisco: Freeman, 1973.

[12] Edgar R C. Local homology recognition and distance
measures in linear time using compressed amino acid al-
phabets [J]. Nucleic Acids Res,2004,32(1):380 —385.

[4

[a—

£ 3 neighbor-joining i3 {¥, 1§ B[R i & i%
HTA IR R

(" AP AR R F I A F SRR SR, KX 430074)
(7 4P AHECR S AT AR AT, KL 430074)

E . 4 T 7 & Saitou #F= Nei 32 i1 49 neighbor-joining #tfb4 5 3% (SN) & Studier f= Keppler # & it
Fik (SK) , AR Fra b i) L %, 5t T — A bead ook 2 SRR A3 HHAK . 5 —, IIA—A &
WA AN, BT A58 & 4R A— AT 08, OB Y $ TR 5 = AL B ik R 480
ABRT H AR P RBAT AT 3 AR B =, T — AR A A X Tt A OTUs
Z a6y K, A IE A RBAT TIEN. RHREREV AT 20 5 H 5k SN kLt

1538 L\ 4,k SK A

W2 E—& 2@ AL,z ks 3 min £ 440 & B A 2 000

AN A BEACHT. VAR R BT R D R R EAEER G TSR RO S BRI R AR R
RERA : R s AR AR Rk ik AL B 2 AT

th[E 422 . TP301. 6

