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Motion simulation and experiment
of a novel modular self-reconfigurable robot
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Abstract: Based on the character of the modular self-reconfigurable (MSR) robot, a novel homogeneous and
lattice MSR robot, M-Cubes, was designed. Each module unit of the robot has 12 freedoms and is composed of
six rotary joints and one cubic link. An attached/detached mechanism was designed on the rotary joints. A novel
space transmitting system was placed on the inner portion of the cubic link. A motor separately transmitted
torque to the six joints which were distributed equally on six surfaces of the cubic link. The example of a basic
motion for the module was demonstrated. The result shows that the robot is concise and compact in structure,
highly efficient in transmission, credible in connecting, and simple in controlling. At the same time, a simulator
is developed to graphically design the system configuration, the reconfiguration process and the motion of
cluster modules. The character of local action for the cellular automata ( CA) is utilized. Each module is
simplified as a cell. The transition rules of the CA are developed to combine with the genetic algorithm (GA)
and applied to each module to accomplish distributed control. Simulation proves that the method is effective and
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feasible.
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The modular self-reconfigurable (MSR) robot is a
new concept that appeared in 1980s. The robots belong
to the area of reconfigurable modular robots and com-
bine the idea of autonomous mobile robots. MSR ro-
bots are metamorphic systems that can autonomously
change their logical or physical configurations (such as
shapes, sizes, or formations), as well as their locomo-
tion and manipulation, based on the mission and the
environment at hand. Because of their modularity, ver-
satility, self-healing ability and low cost reproducibili-
ty, such robots provide a flexible approach for
achieving complex tasks in unstructured and dynamic
environments. They are well suited for applications
such as search and rescue, reconnaissance, self-assem-
bly, inspections in hazardous environments, and explo-
ration in space and oceans. They also pose fundamental
research challenges for robotics and other major bran-
ches of computer science, mechatronics and control
theory.

Recently, many self-reconfigurable robots have
been studied. They can be classified into two catego-
ries: chain-type robots and lattice-type robots. The
chain-type robots are designed for fixed-shape locomo-
tion and an occasional self-reconfiguration, mainly in-
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cluding: CEBOT™, PolyBotm, Conro'™, etc. The lat-
tice-type is suitable for constructing various static con-
figurations, but it is difficult to generate group motion.
The lattice-type robots are designed mainly for self-
reconfiguration, which include 3-D SR robot'*, Crys-
talline', I-Cube'®', Proteo!”, etc.

A modular robotic system ( M-Cubes) has been
designed, which has advantages of both the metamor-
phic capability and the generation of robotic motion. A
simulator for this system that provides interactive
graphical user interface (GUI) was developed to assist
the design process of reconfiguration. By using the sim-
ulator, reconfiguration planning and motion generation
can be designed and tested.

1 Module Design Principle

The robotic module unit has been proposed, which
has a base cube at the center and six connecting joints
attached to its six surfaces as shown in Fig. 1(a). Each
joint can rotate independently, and has a connecting
mechanism by which the unit can connect to or discon-
nect from its adjacent unit. By the connection, an arbi-
trary cubic structure can be realized.

The structure changes its configuration by means
of the rotation of the connecting joint and changes in
the unit connection. At the same time, a communica-
tion channel is connected. The unit can carry a neigh-
bour unit by rotating one of its connecting joints. The
former unit is called a carrier module and the latter a
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Fig.1 Principle of M-Cubes. (a) M-Cubes unit and pair-wise
motion; (b) Prototype of M-Cubes

load module in this motion (see Fig. 1). In the motion,
the rotary connecting joint supported by another unit is
called a support module. Both the carrier and the load
module must release some of their other connections
prior to the motion. A high-torque servomotor was em-
bedded in the cube to control the rotary angles. Each
connecting joint can rotate at arbitrary degrees. The M-
Cubes provides a mechanical lockpin to connect each
other in Fig. 2, which improves the coupling character
and allows some errors in accuracy during approac-
hing. The cone-shape mechanism guides the shaft dur-
ing coupling. The principle of the attached/detached
mechanism is as follows: On the one hand, the motion
of connecting joints rotating independently comes from
the output shaft of the basic cube, but the motion is
controlled by a clutch switching on/off; on the other
hand, the joint is composed of screws and nuts, the
other clutch is utilized to switch on/off motion from
rotation to line of pins.

(a) (b) (©

Fig.2 Attach/detach mechanism of rotation joint.

(a) Alignment; (b) Plugging; (c) Locking

Connection pins consist of slide block, shaft and
ball bearing as illustrated in Fig. 2 (a), and the slide
block connects with the nut. While the screw rotates
and the nut moves, the nut pushes the slide block in a
rectilinear motion. Contact face A and face B is a per-
manent magnetic whose polar gender is opposite.

When the joints are connected, the motion pro-
cesses of the shaft are illustrated in Fig. 2 (b), the
process is divided into two steps: 1) When two joints
are ready to connect, the slide block and the shaft to-
gether move because of the magnetic action of the con-
tact face A and face B opposite polarity. 2) When the

shafts have been plugged into the flute, the shaft en-
counters the bar of flute end-face and stops forward.
The slide block gets over the magnetic force between
the contact face A and face B and continues to go for-
ward. The front-end bevel of the slide block pushes and
presses the ball bearing embedded in the barrel and
makes the ball bearing move radically to fulfill locking
of the pins and the holes.

When modules separate, the motion process of the
connecting shaft is reversed to the connecting process.
First, the slide block moves backward and the ball
bearing relaxes the shafts, and then the slide and the
barrel together move backward to accomplish the
separation between the shafts and the flutes. Though a
unit cannot change its position by itself, reconfiguration
is possible by this pair-wise motion. Note that each
unit’s role is not fixed but changes dynamically during
the reconfiguration process. A prototype is shown in
Fig. 1(b).

2 Simulator of MSR Robot

2.1 Function of simulator

An interactive simulation system is developed as
shown in Fig. 3. A sequence of reconfiguration is de-
signed, and several motions to the modules are given.
The simulator is developed on a PC with Windows
2000/ XP using Java/Java 3D. The main functions of
the simulator are as follows:

(D Graphical display of the process. Motion of the
modules is animated;

) Java editing of initial configuration;

3 Java editing of the motion sequence;

(@) Display of the modules’ state;

() GUI facilities: including zooming in and out,
changing the view point, and toggle change of visibility
of other objects such as floors and obstacles;

(6) The users can design any initial configuration
by indicating the position and orientation of each mod-
ule using simple mouse operations. Then the simulator
allows users to design a sequence of module motions in
a java file or text file. The interface checks the connec-
tivity of all modules and alerts the designer if some
system parts are disconnected. Collision of modules is

£ MSR Robots

Fig.3 Overview of simulator
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also checked automatically.
2.2 Principle of distributed control

Distributed control is scalable, supporting parallel-
ism and is better suited for operation in unstructured
environments. Distributed algorithms are naturally sui-
ted for controlling self-reconfiguring robots because
they take advantage of modularity, allowing the system
to be more robust to failures of individual modules and
communications and supporting partitionings of the ro-
bot.

Cellular automata (CA) represents a system of
distributed, locally interacting cells that evolves accord-
ing to a set of rules. Based on these micro, local inter-
actions with no global coordination, a macro or global
behavior is produced'® . Such a pattern is readily ob-
served in nature and the universe in general.

CA can be thought of as a model of naturally ex-
isting systems. Natural systems, through the evolution,
have produced highly complex systems showing glob-
ally coordinated information processing, with no global
coordination. In contrast to natural systems, today many
systems utilize “global criterion” that requires global
coordination. We will show that, through the evolution
of a cellular automaton, the global criteria of reporting
cell problems are translated to local transition rules of
cellular units. The cellular automaton is evolved by u-
sing genetic algorithms ( GAs)'”'. Specifically, the CA
transition rules are found, or evolved, using the genetic
algorithm.

We represent M-Cubes robot as a collection of
cells, each cell corresponding to one robot module. We
view the resulting structure as a particular type of CA.
The control algorithm is simply a set of local rules that
run on each cell within the system. Each rule is defined
by a set of preconditions on the neighborhood of the
cell and a set of actions that are executed if the precon-
ditions are satisfied. We represent the basic module of
the robot as a cube, but our proposed abstraction can be
replaced by other geometric structures that support the
formation of lattices. Each module is assumed to be
able to translate across the joint of other modules as
well as a transition to other planes of motion. It is also
assumed that each module is able to examine or query
its neighbors and determine the presence or absence of
a neighbor on all sides. Preconditions may include spe-
cific geometric configurations of neighbors and empty
space, or given values of a module’s internal state. The
actions of a rule can include the motion of the cell, an
update of an internal state, or both.

This paper presents the first distributed implemen-
tation of locomotion and self-reconfiguration on lattice-
type system based CA. We propose to develop a paral-

lel and distributed cells’ planning algorithm based on a
recently emerging and promising techniques of combi-
ning evolutionary computation and CA to create an
“evolving” CA system. Recent results suggest that
highly parallel and distributed algorithms can “evolve”
using such a hybrid system, solving complex problems.

The state of the modular system is described by an
array of all the module states. Each module is labeled
by ID (0...n). Each module shape and state are defined
as a class file having members as the position and the
orientation of the connecting joint between the cubic
and the connecting joint. By using the editor of the
simulator, an arbitrary initial configuration of any num-
ber of modules is graphically designed and then stored
as a text file or a java file.

The simulator checks whether all the modules can
be connected, but it does not check whether each com-
mand motion causes collision between modules. By
using the simulator, a program is designed and stored
as a java file. Then, the simulator processes each pro-
gram step at each “simulation time step”, updates the
states of modules and displays the motion of the mod-
ules as animation.

2.3 Activation model

Each module uses the same rule sets and inde-
pendently evaluates the rules and carries out the speci-
fied action resulting from a successful rule. In tradition-
al CA, all cells are evaluated together, so that the next
configuration is generated from the current configura-
tion by simultaneously evaluating all the cells. This
model is not concerned with the physical aspects of the
underlying system. Since real robots are physical sys-
tems, we modify the evaluation model for traditional
CA to a sequential cell evaluation process, in which
only one cell is evaluated at a time. We can easily en-
sure no collisions in simulation by evaluating the cells
one at a time, while in hardware a local locking system
is required.

An evaluation model is defined based on the rela-
tive delay of the activation of the cells. In the model, a
cell can delay activation at most one cycle relative to
any other cells in the system, or equivalently, one cell
can activate at most twice before another cell activates
once. The model can be implemented in simulation u-
sing the algorithm, although in a real robot the
evaluations would be timed implicitly by the system.
Even if software synchronization were possible, it could
represent a significant communication cost, so the asyn-
chronous algorithms may be preferable for systems
where the modules have variable speed to avoid this
overhead'"”'.

2.4 Software implementation
The software not only accomplishes simulating the
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change in module position in general, but also fulfills
metamorphism from initial configuration to goal con-
figuration through attaching and detaching the mod-
ules. So in the simulation environment, the software
simulates the components of a module to the best of its
abilities and the motion of the system. Since Java and
Java 3D have the characteristic of object oriented de-
sign (OOD), we decompose, separately, module, sim-
ulation process and user interface, creating correspond-
ing classes and define particular structures of the mod-
ule and the mode of motion. The purpose of the frame-
work is to simplify the development of the simulation
of modular robots. It must be general, efficient and re-
usable and easy to use.

The two central classes are module and simula-
tion. The first one is abstract and must be a sub-classed
for creating a new type of module. The second one is a
singleton which deals with the Java 3D world ( crea-
tion, stepping) and handles the collision detection with
dedicated callback functions. A module has one and
only one controller which must be a sub-class of the
abstract class controller. This controller will calculate
the new position of the module at each step. These val-
ues must be updated at each step by the module or the
simulation or anything else.

The serializer abstract class offers the possibility
to read/write from a file, the structure of the whole ro-
bot. As the information needed strongly depends on the
module, it is necessary to write a specific sub-class for
each type of module. Several classes offer some useful
services like the capabilities of loading from an . obj
file (it will be created using Proe) supplied by Geome-
tryLoader or a lot of functions for the matrix calcula-
tions or the I/O from/to a file supplied by the utilities
class!'".

The unit module was decomposed into module en-
tity, connector and controller. Module class, connector
class and controller class were created. Module class
finished the calculation and storage of position of the
module and connector utilizing Java 3D and the judge
of self-status and motion. Controller class defined the
function of module controller, including justifying the
connecting status, based on communication messages
module controller planning the path of module and pro-
duced motion sequence. On the one hand, the connec-
tor class accomplished the estimation and storage of
connecting status, and on the other hand, it accom-
plished sending, receiving and storage of connector
messages. The framework of class is shown in Fig.4
(Rectangles are framework classes; rhombuses are ex-
amples for a new module; ellipses are files used by the
software) .

M-Cubes
Utilities controller
M-Cubes M-Cubes
(shape .obj) serializer Controller
Gleé:s?:y Serializer Communication

Connector

M-Cubes <_|—>
e [

!
_‘ Main view ‘——‘ Simulation | Debug ﬁamel

Fig.4 Design of the framework

The simulation class performs main action inclu-
ding constructing the M-Cubes system, the initializing
system and the real-time simulation. User interface is
divided into main view and debug frame. The main
view class is the viewer that is responsible for visioning
and listening to simulation process. The debug frame
class defines a pop-up dialogue which displays con-
necting status and debug information. The software has
two threads: the main thread MSR3D responsible for
GUI and displaying motion process, the other thread
MSREngine responsible for producing motion se-
quence. The flowchart of the main thread and the simu-
lation thread are shown in Fig.5.

3 Reconfiguration and Motion Procedure

3.1 Basic motions

Though each module has limited degrees of free-
dom, a cluster of the modules has the ability of recon-
figuration. Two basic motions are introduced here to
explain the reconfiguration process. For example, we
assume that the motions are carried out on a plane tiled
by many other modules.

The basic motion of M-Cubes is implemented by
the rotation of the connecting joints, and it has over-
turn and level movement. From the same view point,
the level movement is the motion in which the moving
module runs on the surface of other modules; overturn
means that the moving module rotates to the surface of
other modules; the motion needs the help of other
modules to accomplish the motion, and the module can
be divided into a load module, a carrier module and a
support module according to the function of the mod-
ules. In Fig. 6(a), M;, M,, M, are all cell modules, if
M, wants on the top surface of M,, then M, is the load,
M, is the carrier, M, is the support. By connecting M,
and M,, connecting M, and M,, M, can be accom-
plished on the top surface of M, by the connecting joint
of M, rotating 90°. By the same method, M, is also on
the top surface of M,. This is the principle of the level
motion in Fig. 6(b). But the topology structure of the
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Fig.5 Flowchart of simulation. (a) Main thread; (b) Simulation thread

robot must maintain connection during the process of
motion. The module has the action of connecting and
detaching. Connecting means that the pins of two
neighbor connecting joints plug each other into the
holes of the others and the self-lock mechanism main-
tains the pins fixed position. The two neighbor con-
necting joints are coupled as a body. On the other
hand, detaching is the inverse action of connecting with
the two neighbor connecting joints being decoupled in
favor of a single module motion. By combining these
basic motions, modules can reconstruct in a variety of
structures.

M,
AN A
(a)
"
M2 Mo [,
My M,
(b)

Fig.6 Way of motion. (a) Module overturn (b) Module level move

3.2 Experiment

Examples of hand-coded reconfiguration proces-
ses are shown in Fig. 7, in which a robot shapes itself
from a plane cluster of nine modules to a tower of
eight modules after eight steps. Note that, in the simu-
lation, we do not assume the floor tiled by other mod-
ules.

(a) (b) (d)

Fig.7 Stationary self-reconfiguration. (a) Step 0;(b) Step 3;
(c) Step 5;(d) Step 8

We have built five modules and finished the experi-
ment of overturn and attaching/detaching. Shown as
Figs.8 (a) and (b), the process of a module overturned
is demonstrated; Figs.8 (c) and (d) show the process of
aching.

Fig. 8 Experiments of overturn and attach/detach. (a) Ini-
tial position; (b) Position of overturning 90°; (¢) Plugging; (d)
Locking
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4 Conclusion

A novel homogenous modular self-reconfigurable
robot M-Cubes is presented. It has the capabilities of
both reconfiguration and motion. A graphical simula-
tor for the MSR robots system has been developed and
the relation of classes and their threads are analyzed.
A complicated example has been planned using the
simulator. Five modules are developed. Basic experi-
ments of hardware modules are conducted to show the
feasibility of the system. It is not difficult to modify
the simulator to generate actual signals to these con-
trollers according to the designed sequence.
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