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Abstract: The evolutionary strategy with a dynamic weighting schedule is proposed to find all the compromised

solutions of the multi-objective integrated structure and control optimization problem, where the optimal system

performance and control cost are defined by H, or H_ norms. During this optimization process, the weights are

varying with the increasing generation instead of fixed values. The proposed strategy together with the linear

matrix inequality (LMI) or the Riccati controller design method can find a series of uniformly distributed non-

dominated solutions in a single run. Therefore, this method can greatly reduce the computation intensity of the

integrated optimization problem compared with the weight-based single objective genetic algorithm. Active

automotive suspension is adopted as an example to illustrate the effectiveness of the proposed method.
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The integrated structure/control optimization has
been acknowledged as an advanced and systematic
methodology to achieve optimal system performance
and minimum control cost of the closed-loop system in
the vibration suspension. There exist many approa-
[1-21 used to solve this complex multi-objective op-
timization problem. And the weight-based single objec-
tive genetic algorithm ( SOGA) is most popularly

ches

adopted by many researchers"” ' because of its robust,
multipoint and parallel searching characteristics. How-
ever, for a multi-objective optimization problem, there
often exist a series of compromised solutions, usually
called Pareto optimal sets. If all the Pareto solutions
can be obtained, the designer can have a full view of
the optimization problem. Because the SOGA can only
get one solution for a single run, it should be imple-
mented many times in order to get all the Pareto solu-
tions, which greatly increase the computation intensities
(time) . What is more, the objective weights cannot be
clearly defined in most cases. These are required for
most controller design methods such as linear matrix
inequality (LMI) and the Riccati method, so the
weight-based approaches are very difficult to imple-
ment for realistic problems.

In this paper, the evolutionary strategy (ES) with
a dynamic weighting schedule is proposed to solve the
integrated optimization problem. This method can not
only obtain the whole Pareto sets in a single run, but it
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can also avoid the selection of the objective weights
precisely beforehand.

1 Modeling

Considering a linear time-invariant continuous
time system,
X¥=A(p)x +B,(p)w +B,(p)u
z=C(p)x +D,(p)w+D,(p)u (1)
y=C,(p)x+D,(p)ow+D,(p)u
where x is the system state vector, z is the performance
output, y is the sensor output, e is the external disturb-
ance, u is the control input, and p is the set of the
structural parameters such as mass, stiffness, and damp-
ing coefficients.
In most integrated designs, the objectives can be
classified into the system performance J, and the con-

)9 which can be

trol cost J, (or the robust stability
usually defined by H, or H_ norms. So the weighted
performance J is expressed as
J=wJ, +w,J, (2)
where w, and w, are the corresponding weights for J;
and J_, respectively.
The integrated structure/control design can be for-
mulated as
min: J, and J,
Subject to ¥ =A(p)x +B,(p)w + B,(p)u

u=-Ky, peip,p,}
Design variables: p and K

(3)

where K is the active controller designed by the LMI or
the Riccati method to optimize the weighted perform-
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ance J; p, and p, are the lower and upper limits of the
structural parameters, respectively.

2 Integrated Optimization based on Dynamic
Weighting Schedule

2.1 Application of dynamic weighting schedule

When the LMI and the Riccati method are adopt-
ed to design the active controller in order to optimize
the weighted performance J defined by Eq. (2), the
weights w, and w, must be changed during the inte-
grated optimization process in order to get as many as
possible of the Pareto optimal solutions.

" shown in

The dynamic weighting schedule

Fig. 1 can be used in this optimization process, which
is defined as

w (1) = |sin(2wt/F) | 4

wy(1) =1.0 —w, (1) } )

where F denotes the varying frequency and ¢ is the

current generation of the evolutionary strategy. Obvi-

ously, the weights w, and w, are varying gradually

with the generation F' =150 and the weight w, has two

loops 1-0-1 in the whole generation from 0 to 150.

0 50 100 150
Generation
Fig.1 Dynamic weighting schedule based on generation

2.2 Integrated optimization based on elitist evolu-
tionary dynamic weighting aggregation

Jin et al. " first suggested the dynamic weighting
aggregation (DWA) for multi-objective problem opti-
mization; however the results in the following section
show that the DWA cannot find uniformly distributed
solutions to the integrated optimization problem. The
elitist evolutionary dynamic weighting aggregation
(EEDWA) is proposed in this part based on the
standard (u + A)-ES'™ . The integrated structure/con-
trol design is realized by combining EEDWA and
LMI or the Riccati controller design method. The de-
tailed steps are described as follows:

Step 1
the dynamic weighting schedule for every generation

Code the structural parameters. Make

and randomly generate the y individuals to form the

parent population.

Step 2 Generate the new A individuals ( off-
spring) by recombination and mutation operations
based on the y individuals in the parent population.
So, the whole population is composed of the A +u in-
dividuals.

Step 3 Set the weights w, and w, for all the A
+ o individuals according to the current generation
number and the dynamic weighting schedule. Opti-
mize its controller K via the LMI or the Riccati meth-
od and obtain the system performance and the control
cost of the closed-loop system as the fitness of the
ES.

Step 4 Non-dominated sort all the individuals
according to their fitness and save all the found Pareto
solutions in the A + u individuals to the special ar-
chive!””

Step 5
output the solutions in the special archive. Or continue

If the terminated condition is satisfied,

the next step.
Step 6
current A + gy individuals to form the new parent popu-

Select the best u individuals from the

lation according to their non-dominated levels, and
then go to step 2.

3 Case Studies

Active automotive suspensions to achieve riding
comfort and stability have been researched for decades.
The suspension model provided in Ref. [6] is used to
illustrate the integrated structure/control design method
based on EEDWA. The quarter car model is shown in
Fig.2, where m_ and m,, are the sprung and unsprung
masses, respectively; k. is the tire stiffness; k, and c, are
the suspension stiffness and damping coefficients; x,,
x,, and x, are the vertical displacements of the sprung
mass, the unsprung mass and the road, respectively; and

e

u is the active control force.

Fig.2 Quarter car model

If the state x = {x,, —x,, X

us?

. . T
Xy =Xy X Xg} ’

s

the state space representation of the suspension model
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can be expressed as
X=A(k,c)x+B,(k,c)w+B,(k,c)u (5)

r o 1 0 0 -17
k. c, k, C,
K _ G s 5 0
mus mus mus mus
A(k,c)=| O -1 0 1 0
CS kS CS
- e
mi mS mS
L 0 0 0 O _Wf_
-0 A
0 1
O mus
Bl(ks9cs) = 0 ’ BZ(ks’CS) = O
0 il
Wy m
L 0

where @ denotes a zero-mean, white and Gaussian dis-
turbance; and wy is the cut-off frequency used to filter
the disturbance w to simulate the real ground noise.

The system performance can be defined as the
following H, norms:

X
Jy=w||n(x,—x) |, J.=w, |rul, (6)
ry(X, — Xy )
where r,, r, and r, are the coefficients to normalize the
acceleration, the tire deflection and the suspension
stroke, respectively; and r, is the coefficient to normal-
ize the control force.

The system parameters shown in Tab. 1 are used
to design the full state feedback controller. The nor-
malization coefficients r,, r,, r;, r, for the active sus-
pension system performance are 1, 300, 100, 3. 344 7
x10 7. The numbers of parent and offspring popula-
tions are 15 and 100, respectively; and the maximum
generation is 150.

Tab.1 Parameters for the quarter car model

Items Value
Sprung mass m,/kg 480
Unsprung mass m,,/kg 48
Tire stiffness k,,/(kN-m ') 190
Suspension stiffness k,/(kN+m~ ) [0, 160]
Suspension damping ¢,/ (kN-s?-m ") [0, 16]

The optimization results are shown in Figs. 3 and
4. Fig. 3 shows the relationship between the objectives
and the design variables. The results in Fig. 3 reveal
that the suspension stiffness and damping coefficients
in the integrated design are varying with the control
cost instead of fixed values as in the sequential coun-
terpart. Fig. 4 shows the Pareto front between the sys-

tem performance and the control cost found by the
proposed method, the SOGA and the DWA. For the
sake of comparison, the results obtained by the con-
ventional sequential design method ( design the struc-
ture first, then optimize the controller sequentially) is
also shown in Fig. 4. The results show that the inte-
grated design methods outperform the sequential coun-
terpart. The EEDWA finds 284 uniformly distributed
compromised solutions in a single run; the SOGA ob-
tains only 10 solutions by running for 10 times, al-
though the SOGA has the same numbers of the popu-
lation and the maximum generation as the EEDWA.
As stated in section 2, the DWA cannot find the uni-
formly distributed solutions. Pareto dominance plays
an important role for the EEDWA searching a series
of uniformly distributed Pareto solutions, which is not
only used in archiving (step 2), but also used in the
selection of the offspring (step 6). These results re-
veal that the EEDWA is effective in searching the Pa-
reto fronts of the integrated optimization problem.

Stiffness/ (kN*m~1)

Control cost

(a)

Damping/ (kN+s* *m~1)

Control cost

(b)

Fig.3 Relationship between control cost vs. stiffness and

damping

The Pareto fronts can help the decision maker to
have a full view of the integrated design problem. For
example, it is observed from Fig. 4 that if the required
control system performance index is larger than about
60, the active controller is not necessary to use, be-
cause the passive control system can satisfy this re-
quirement. The system performance cannot be smaller
than 54. 4, even if the active controller is applied. And
it is easy for the decision maker to choose the final so-
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Fig.4 Pareto front between system performance and control cost

lution from the Pareto fronts because each solution is
naturally associated with a couple of weights, as
shown in Fig. 4, which defines the relative importance
of the optimization objectives, when the EEDWA is
used to optimize the problem.

4 Conclusion

This paper describes a new method to solve the

integrated structure/control design problem for
achieving optimal system performance and minimum
control cost. The (u + A)-ES with a dynamic weigh-
ting schedule is proposed to solve the multi-objective
optimization problem. The proposed method can not
only find all the uniformly distributed Pareto optimal
solutions in a single run but can avoid selecting the
weights precisely beforehand, which greatly reduces
the computation intensity compared to the SOGA.
What is more, the designer can benefit from this meth-
od by having a full view of the integrated design
problem.
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