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PSO algorithm for Young’s modulus reconstruction
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Abstract: To get the quantitive value of abnormal biological tissues, an inverse algorithm about the Young’s

modulus based on the boundary extraction and the image registration technologies is proposed. With the known

displacements of boundary tissues and the force distribution, the Young’s modulus is calculated by constructing

the unit system and the inverse finite element method (IFEM). Then a tough range of the modulus for the whole

tissue is estimated referring the value obtained before. The improved particle swarm optimizer (PSO) method is

adopted to calculate the whole Yong’s modulus distribution. The presented algorithm overcomes some

limitations in other Young’s modulus reconstruction methods and relaxes the displacements and force boundary

condition requirements. The repetitious numerical simulation shows that errors in boundary displacement are not

very sensitive to the estimation of next process; a final feasible solution is obtained by the improved PSO

method which is close to the theoretical values obtained during searching in an extensive range.
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The abnormalities of biological tissues always in-
duce changes in the elastic properties which are useful
in diagnosing diseases. The physical palpation, an old
effective diagnostic way, is a restricted method to
measure abnormal tissues in deep bodies. With the de-
velopment of medical imaging, more and more technol-
ogies are used in measuring abnormalities of tissues.
Currently, the Young’s modulus reconstruction for soft
tissues is grounded on ultrasonic imaging technology.
There are mainly two methods: the vibration sonoelas-
tography and the static compression technique for dis-
placement estimation.

Vibration sonoelastography techniques obtain the
Young’s modulus distribution by analyzing reflected
wave velocities and damping. In other words, low fre-
quency mechanical vibrations, which can cause tissue
co-frequency, are applied on the surface of tissues, and
then the reflected shear wave velocities or the tissue vi-
bration velocities, related to the tissue viscoelasticity,
were measured to obtain the Young’s modulus' .
The static compression technique for displacement esti-
mation is another important method to measure tissue’s
Young’s modulus. Static pressure is loaded on the sur-
face of tissues, which can produce stress of tissues and
changes of ultrasonic echoes. By analyzing ultrasonic
echoes, the displacement distribution was measured,
and then the relative tissue’s Young’s modulus distribu-
tion was obtained using the inverse method'*~"'. Zhu et
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al."™™ proposed the FEA-based modulus estimation
technique, assuming all the displacement distribution as
a known condition. Under the same condition, Liew et
al."” estimated the modulus distribution using the B-
spline and the gradient method.

However, these methods have essential disadvan-
tages. Vibration sonoelastography is the point by point
scanning, so the efficiency is low. Furthermore, its ima-
ges just half-quantitatively show the mechanical prop-
erties. Static compression technique for displacement
estimation is composed of the coherence technique and
the incoherent technique. Today, the speckle tracking
technology is used more widely, while it is too sensi-
tive to the coherence of fore-and-aft compression.
Hence, it is just used in small loads commonly.

With the high speed development of imaging, the
boundaries of tissues and lesions can be taken out, ef-
fectively based on CT!'"", MRI'""! and ultrasonic ima-
ging“zl [131,
can get the boundary displacements. And we sincerely

. Then by means of image registration we
hope to find a new method to estimate the quantitative
Young’s modulus distribution with loose conditions.
The details of our modulus estimation method will be
described below.

1 Algorithm for Young’s Modulus Recon-
struction
The Young’s modulus reconstruction method is

proposed in this chapter. The flowchart of the algorithm
is shown in Fig. 1.
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Fig.1 Flowchart of the Young’s modulus reconstruction

1.1 Inverse finite element method (IFEM)

The formula of the finite element method is foun-
ded on the variation principle of elastic mechanics. For
the 2-D problems, the common choices for element
types are triangles and quadrilaterals. Here, we take the
quadrilateral element as an example.

Each element matrix equation for elasticity prob-
lems has the form

K6 =f (1)
where K°, 6% and f° are the element stiffness matrix, the
element nodal displacement vector and the element
nodal force, respectively.

A contiguous area in the abnormal domain can be
meshed into numbers of elements, which are rectangles
of the same size in this paper. The matrix equation of
the whole meshed area has the form

Ks =f (2)
where K is the global stiffness matrix, é is the global
nodal displacement vector, and f is the global nodal
force vector. Each component of K° is accumulated on-
to K. Hence, each component of the global stiffness
matrix is a linear combination of the Young’s modulus
of each element. So K can be written as

K=[K,] i=1,2,...,N;j=1,2, ..., N (3)

Ne

(K} = X E (4)
where ¢’ are the constants, and E° is the element

Young’s modulus.
The traditional finite element problem is to solve
é with K, and f is already known. The inverse FEM is
to solve K or f. In our research, we reconstruct the
Young’s modulus ( E) with the boundary displacements

and the outside forces already known.
1.2 Particle swarm optimizer (PSO) algorithm
The PSO", one kind of swarm intelligence, is
proposed by Kennedy and Eberhart in 1995. It is simi-
lar to the genetic algorithm where the system is initial-
ized with a population of random solutions. However, it
does not have the process of chiasms and variations, so
its advantages are the background of intelligence and
the simple operation.
The updated velocity is influenced by the global
best particle and the local best particle position.

V=wV+ ar (Pbesl - Ppresem) + C2r2(gbesl - Ppreseul)
(5)
Ppresenl :Ppresenl +V (6)

where ¢, and c, are the study factors and usually ¢, =c,
=2; r, and r, are the random numbers between 0 and
1’ P position
tion, global best particle position and present particle

o gbcst and P

bes!

are the local best particle posi-

position in the swarm, respectively; w is the inertia
weight. By Eqgs. (5) and 6) and iterations of the evolu-

tion, the PSO can converge to the best solution.

1 [15]

As w concerned, Shi et a put forward a

linearly decreasing weight (LDW) strategy,

ity = s = VW) (T, =1 .

Tmax + Wend

where ¢ is the current iteration times; 7, is the maxi-
mum evolution generation; w,; and w, , are the initial
inertia weight and the finial inertia weight, respective-
ly. Comparatively, when w is in a large value, the glob-
al search ability is better, or it is the local search abili-

ty.

2 Evaluating Young’s Modulus Based on IF-
EM and PSO

For biological tissues we can get the boundary
displacements based on the technologies of boundary
extraction and image registration. With the additional
boundary conditions, the Young’s modulus of the upper
boundary elements is calculated by the IFEM, then its
distribution within the whole area using the PSO is e-
valuated. The initial value and the searching range of
particles referred to the value E calculated before. The
reconstruction of the Young’s modulus is shown in
Fig. 1.

2.1 Calculating E using IFEM

As shown in Fig. 2, we take the upper limit ele-
ments from the whole system, where i denotes the
number of elements, f is the force applied on nodes
and the black dots represent the inner nodes.

With the assumption that the displacements of
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Fig.2 Upper boundary elements

outside elements are known, while the Young’s mod-
ulus of each element is unknown, take two elements as
a small unit, for example E, and E,. The details of
these steps are provided below.

Step 1 The variables for the small unit are E,,
Ey, o Jarys fores Froys Joses oz s Vi Uyy and vz As-
sume that fi;, =0, f,;, =0.5f,;. And f} is the nodal
force, u;; is the x-directional displacement and v, is the
y-directional displacement of the node ij.

Step 2 Calculate E, and E, using the IFEM.

Step 3 Make E, as a known variable, then cal-
culate uy,, vy, fi,, and f,, , which are used as known
variables in the next step.

Step 4 Update the new small unit and repeat
step 2 and step 3. Then we can get p;,, p3,-

Step 5 If ‘pl3x _fl3x‘ <e, ‘pllv _.fl3y‘ <e,
continue the next unit, or go back to step 1 with fi;, =

P13, and fl3y =Diy-

E, E, Es “ee E;_.| E;

Compare
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E, | E

Fig.3 Sketch map for calculating E

Then why do we take two elements as a small
unit? With the assumption that f,;, and f,;, are known,
there are 12 equations as well as 12 variables in the
unit. Meanwhile, f};, and f;, will affect the precision
of the first element less.

2.2 Calculating global E distribution using PSO

According to the Young’s modulus calculated
above, we can give a tough estimation of the whole

domain. Define optimization fitness function as P,

u' —u

P= x 100% (8)

where u’ is the calculated boundary nodal displace-
ment, and u is the measured nodal displacement.

Step1 Take {E,} (i=1,2, ..., N) as the parti-
cles. Initialize these particles and the velocities.

Step 2 Calculate fitness value, and update the
best fitness value.

Step 3 Calculate particle velocity according to
Eq. (5), and update the particle position according to
Eq. (6).

Step 4
mum error criteria is not attained, jump to step 2, or
end.

If the maximum iterations or the mini-

In the numerical simulation, we use one group of
particles and three groups of particles to solve the E
distribution respectively.

3 Test Example

3.1 Model

We simulate an object for which the forward ap-
proach solves. The dimension of the simulated object is
4 x 4. The Young’s modulus of the background is 20
kPa which approximates the stiffness of normal glandu-

. 8
lar breast tissue'™

. There are two targets in the object
that simulate the abnormal tissues, one is 45 kPa and
the other is 10 kPa. And the softest tissues and tissue-
like materials (with the exception of the lung) can be
considered incompressible, so we assume the Poisson
ratio is 0. 49. And the displacements of boundary nodes

are already known by the measurements.

1vvy
-

Fig.4 Test model
3.2 Results
If the measured boundary nodal displacements
are accurate, the Young’s modulus of upper boundary
elements are shown in Tab. 1.
Tab.1 Numerical results with ideal input

Item Theoretical Calculated Relative
value/kPa value/kPa error/ %
E, 20 19.97 0.15
E, 45 44.35 1.44
E, 20 19. 89 0.55
E, 20 19.92 0.40

Final optimization results of the algorithm are
shown in Tab. 2. In the test, all the algorithms run
dozens of times with 50 iterations.
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Tab.2 Young’s distribution

No. Theoretical Calculated Relative

value/kPa value/kPa error/ %
1 20. 00 20. 05 0.25
2 20. 00 19.42 2.90
3 20. 00 19. 67 1.65
4 20. 00 18.52 7.40
5 20. 00 18. 38 8. 10
6 20. 00 20. 44 2.20
7 10. 00 11.97 19.70
8 20. 00 19.78 1.10
9 20. 00 19.73 1.35
10 20. 00 18.75 6.25
11 20. 00 18.19 9.05
12 20. 00 19.58 2.10
13 20. 00 19.97 0.15
14 45.00 44. 35 1.44
15 20. 00 19. 89 0.55
16 20. 00 19.92 0. 40

Inevitably, there is noise on the displacement es-
timates that are used in modulus estimation. So it is
necessary to study the effect of noise on the input data
in the results. We rely on numerical simulation again.
10% deviations of the theoretical displacements are
used to study the relationship between the noise power
and the modulus estimation error.

Tab.3 Numerical results with noisy input

Item Theoretical Calculated Relative
value/kPa value/kPa error/ %
E, 20. 00 18. 15 9.25
E, 45.00 40. 31 10. 42
E; 20. 00 18.08 9. 60
E, 20. 00 18. 11 9.45

Comparing Tab. 1 and Tab. 3, we find that the
errors in boundary displacement are not very sensitive
to the estimation of the next process.

4 Conclusions

The method proposed in this paper is based on
the technologies of image registration and boundary
extraction. Through a series of research results, we
find that:

1) The Young’s modulus of the lesions can al-
ways be close to the theoretical values searching in an
extensive range. It is of great significance to the appli-
cation.

2) This mathematical model has not a unique so-
lution essentially. However, it can produce a good fea-
sible solution, even under noisy displacement input.

And compared with other algorithms for the
Young’s modulus reconstruction, the proposed method
requires loose requirements. Meanwhile, the technolo-
gy of image registration can be applied on the technol-
ogies of CT, MRI and ultrasonic imaging, the model

can be used widely, and has the advantage of expand-
ability. How to advance the accuracy of the results by
inducing other optimization methods and how to make
our method be applied in practice are future research
for us.
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