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Abstract: Current dynamic finite element model updating methods are not efficient or restricted to the problem
of local optima. To circumvent these, a novel updating method which integrates the meta-model and the genetic
algorithm is proposed. Experimental design technique is used to determine the best sampling points for the
estimation of polynomial coefficients given the order and the number of independent variables. Finite element
analyses are performed to generate the sampling data. Regression analysis is then used to estimate the response
surface model to approximate the functional relationship between response features and design parameters on the
entire design space. In the fitness evaluation of the genetic algorithm, the response surface model is used to
substitute the finite element model to output features with given design parameters for the computation of fitness
for the individual. Finally, the global optima that corresponds to the updated design parameter is acquired after
several generations of evolution. In the application example, finite element analysis and modal testing are
performed on a real chassis model. The finite element model is updated using the proposed method. After
updating, root-mean-square error of modal frequencies is smaller than 2% . Furthermore, prediction ability of the
updated model is validated using the testing results of the modified structure. The root-mean-square error of the
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prediction errors is smaller than 2% .
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In modern engineering, the precise finite element
model (FEM) plays a key role in dynamic design. But
there are always errors in the finite element modeling
of a structure due to various assumptions and uncer-
tainties. The FEM must be updated to minimize the
deviation between finite element analysis ( FEA) re-
sults and experimental modal analysis (EMA) results.
In the past thirty years, a variety of updating methods
have been proposed'"’. These methods can be divided
into two categories depending on how updating ob-
jects are defined: matrix updating and design parame-
ter updating. For the former, elements of mass matrix
and stiffness matrix are taken as updating objects. For
the latter, design parameters such as the Young’s mod-
ulus, density and cross section area are taken as upda-
ting objects. It is obvious that, for the latter, the upda-
ted value can be easily interpreted by the engineers
because of its obvious physical significance.

Design parameter updating used to be concluded
as constrained optimization problems. Generally the
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problems are solved according to sensitivities of modal
respect
However, it can possibly lead to local optima solu-

parameters with to design parameters.
tions. To determine the global optima, the genetic al-
gorithm ( GA) has been adopted in model upda-
ting'>?. The genetic algorithm'*! is a kind of global
optimization method. The basic idea of the GA is to
find the best candidate solution (named “individual”
in the GA), which leads to the maximum objective
function (named “greatest fitness value”), from a lot
of individuals in single step (named ‘“generation” in
the GA) of optimization iteration (named “evolution”
in the GA). The sensitivity analysis is no longer
necessary because only the fitness value of individual
is required. Therefore, it is able to deal with such pro-
blems that cannot be solved according to sensitivity
information.

As to FEM updating, individual is a group of fea-
sible solutions for design parameters. Its fitness value
is the function of deviation between EMA results and
FEA results. To evaluate the fitness of each individu-
al, FEA must be performed using the design parame-
ters corresponding to that individual. Generally, there
are hundreds of individuals in a generation of the GA.
This implies that hundreds of FEA must be performed

in a single generation. This is really computational-in-
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tensive for structure with great dimensions of free-
doms. Hence, current updating method'>” based on
the GA is not applicable for real structures.

In recent years, meta-models have been accepted
in engineering"” ="' . Fast meta-models are mathematical
models constructed according to sampling data. They
are utilized as the surrogate models for FEMs to de-
scribe the functional relationship between physical pa-
rameters and structural features such as modal frequen-
cies. The response surface model (RSM)'™ is one of
the major meta-models. Polynomials are used to ap-
proximate the map function between physical parame-
ters and structural features

by using regression

analysis.
1 Updating Using RSM and GA

The FEM updating using the RSM and the GA is
a two-stage method. The first stage is the construction
of the RSM using the experimental design technique
and the regression analysis (RA) method. The second
stage is to perform the global search using the GA.

In the second stage, the RSM is used to define
the fitness function and to substitute FEM in the evo-
Iution to compute the fitness values. Fig. 1 shows the
flowchart of the proposed method. The details of the
two stages are introduced in the following sections.

D-optima design

Regression analysis
e

Construction
of RSM

Yes

Fitness function

Population
initialization

Global search
using GA

Fig.1 Flowchart of updating based on RSM and GA

1.1 Construction of response surface model

Supposing that the following polynomial model
describes the functional relationship of modal frequen-
cy with respect to design parameters,

f=BO+Zﬁjpj (1)
j=
where f is the modal frequency, piel-1,1] is the

normalized design parameter, and B, and S; are un-
known coefficients.

Supposing that there are n groups of samples

Ji=Bo +BiPy + - +B,P1n
5 =B +B1p2:1 + o+ B,Po (2)

Ju=Bo +BiPu + - + Bl
where m is the number of parameters to be updated.
Rewrite Eq. (2) into matrix form,
F =X (3)
where

F={fi.fo ... [}
L py Po - Pua
X = .1 1?21 1?22 P.zm (4)
1 pnl an pnm
B:{BO’B]’ ""Bm}T

The unknown coefficient vector 8 can be estimated by
solving Eq. (3),
B=(X"X)'X'F (5)

The accuracy of the polynomial model (1) must
be verified and the following indicator is used,

E = 20 -f)’ (6)
j=
where n is the number of samples, f; is the FEA re-
sult, andj‘j is the results output by the RSM.

The procedure can be concluded as follows:

(D Determine sampling points using D-optima
design. D-optima'®’ is a kind of experimental design
technique which determines the best sampling points
for the estimation of a polynomial’s unknown coeffi-
cients given the order and the number of independent
variables of the polynomial model. In this study, D-
optima is used to determine matrix X in Egs. (3) and
(4).

(2 Compute the sampling data using FEA. In this
step, FEA is performed n times. The row of matrix X
is taken in turn to determine the value of design pa-
rameters as the input of FEA in each time. The result
of this step is vector F in Egs. (3) and (4).

(3 Estimate the coefficients based on sampling da-
ta.

(@ Verification of the RSM. If the RSM is not
accurate, go back to step (1. Augmentation sampling
points can be determined by D-optima.

1.2 Global search using genetic algorithm

After the RSM is constructed and verified, it is
adopted in the global search using the GA. Major
steps of the application of the genetic algorithm in-
clude the construction of fitness function, the initial-
ization of population and the evolution. Besides, the
definition of variable bounds, the coding and decoding
method and the design of operators must be consid-
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ered.

Among all the problems, construction of fitness
function is the most important because the fitness is
the key information for the evolution. In this study, the
purpose of the FEM updating is to find a group of de-
sign parameters P = (p,, p,, .-, P,,) » Which minimize
the deviation between experimental modal frequency
and analytical modal frequency. In this paper, the de-
viation is described by the square of relative error of
modal frequency. Considering that the GA seeks the
individual with the greatest fitness value, the recipro-
cal of the error is adopted as the fitness function,

fl’imess = ( 7)

where f, stands for the experimental modal frequency,
and f, stands for the analytical modal frequency. In-
stead of using FEA in the current method™?', the
RSM is adopted to compute the analytical modal fre-
quency.

The initialization of population is generally per-
formed by randomly selecting hundreds of groups of
values for the design parameters. Each group is called
“individual”. The RSM is used to compute analytical
modal frequency taken every individual as the input of
the polynomial model. Then the analytical modal fre-
quency is adopted to compute the fitness for the indi-
vidual according to Eq. (7).

The evolution starts from the initial population
and finishes after several generations. In every genera-
tion, the selection, the crossover and the mutation are
performed. To accelerate the convergence, the elitist
model is employed. The best individual of the current
generation is copied to the next generation without be-
ing operated.

The design parameters are normalized in the con-
struction of the RSM, the bounds are [ — 1, 1]. Float
representation is adopted in coding and decoding.

2 Application Example

A chassis model of NJ6550 is adopted as an appli-
cation example. FEA and modal testing are performed.
The FEM is updated using the proposed method.

2.1 Finite element analysis

ANSYS is employed in the FEA. Fig. 2 shows
the FEM of the chassis. Spring elements are used to
model the joints. Altogether, the FEM consists of 100
beam elements and eight spring elements.

Because only the low order modes greatly affect
the dynamic performance of the chassis, only the first
twelve modes are considered.

Fig.2 FEM of the chassis model

2.2 Experimental modal analysis
2.2.1 Modal testing

The chassis model is suspended by elastic band.
The suspension frequency is 1 Hz. Due to the limited
number of the available sensors, two arrangements are
made for the measurement of the vertical and the hori-
zontal dynamic characteristics, respectively.

For each arrangement, multiple reference hammer
testing is performed. Three acceleration sensors are lo-
cated on point 1, point 10 and point 30. Impulse exci-
tation is put on all the thirty points in turn. Fig. 3

shows the location of points.
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Fig.3 Location of points

Fig. 4 shows the reciprocal of frequency response
functions (FRF) between point 1 and point 30 in the
vertical direction testing.
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Fig.4 Typical FRF

2.2.2 Modal identification

The rational fraction orthogonal polynomial
(RFOP) method is adopted to identify modal parame-
ters. Fig. 5 displays modal frequencies and mode
shapes of the first six modes. Figs.5(a), (¢) and (e)
are vertical modes and correspond to the first three
significant peaks in Fig. 4.
2.3 FEM updating

The FEM is updated using the proposed method.
Third order polynomial models are fitted for each modal
frequency with respect to its sensitive design parameters.

The design parameters are the Young’s modulus
E of beams, the material density of beams and the
spring stiffness. Details are listed in the first column of
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(a) (b)
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Fig.5 Identified modal frequencies and mode shapes. (a)
20.78 Hz; (b) 38.81 Hz; (c) 75.40 Hz; (d) 89.61 Hz; (e) 97.91
Hz; (e) 126.44 Hz
Tab. 1. Fig. 6 is the visualization of the response sur-
face of the second modal frequencies.

Global search based on the genetic algorithm is
then performed. The initial population has 256 individ-
uals. Crossover probability and mutation probability
are 0. 9 and 0. 01, respectively. Nine experimental mo-
dal frequencies are used in the updating. Tab. 1 lists
the initial value and updated value of the parameters.

Tab.1 Updating design parameters

Item Initial value Updated value

E (long beam)/GPa 210 204

E (short beam) /GPa 210 200

Density of beam/(kg + m ~3) 7 850 7 813

Length (short beam)/m 0.380 0 0.380 5

Spring stiffness (x)/(MN - m~") 20.0 20.8
Spring stiffness (y)/(MN + m~') 100 97

Spring stiffness (z)/(MN - m~!) 2.00 1. 46

Frequency/Hz

Fig. 6 Visualization of response surface model

Tab. 2 lists the initial analytical results, the results
after updating and their corresponding errors. The
root-mean-square error decreases from 4.96% to
1.60% . The maximum error decreases from 10. 08 %
to 3.66% .

Tab.2 Modal frequency error

Mode number Test result/Hz Initial analytical result/Hz Initial error/%  Analytical result after updating/Hz  Error after updating/ %

1 20.78 21. 69 4.:
2 38. 81 38.29 -1
3 75. 40 717. 86 3.
4 89.61 90.29 0.
5 97.91 102. 21 4.
6 126. 44 134.50 6.
7 157.33 162. 26 3.
8 159. 11 162.73 2.
9 171. 69 172.97 0.
10 173.38 190. 87 10.
11 194.52 207. 40 6.
12 198.58 211.40 6.

20. 43 -1.68
38. 11 -1.80
75.83 0.57
88.95 -0.74
98.70 0. 81
129.59 2.49
158. 09 0.48
158. 94 -0.11
170. 19 -0.87
175. 43 1.18
201. 65 3. 66
200. 59 1.01

2.4 FEM validation

To validate the qualification of the updated mod-
el, the predication ability must be taken into ac-
count'"”’. Therefore, the structure is modified by
adding a beam between point 3 and point 18. Also, the
modified structure is tested and modal parameters are
identified to be used in the validation. The modal fre-
quencies of the modified structure are listed in the sec-
ond column of Tab. 3.

Tab.3 Prediction error of modal frequencies

Mode number Test Predicted Prediction
result/Hz result/Hz error/ %
1 22.12 21.90 -0.99
2 40. 89 39. 89 -2.44
3 75.51 75.91 0.53
4 95.55 95.07 -0.50
5 99. 81 100. 92 1. 11
6 127.85 130.76 2.28
7 157. 12 158. 15 0. 66
8 158.92 159.75 0.52
9 167. 90 167. 68 -0.13
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Beam elements are added to the updated FEM
and the FEA is performed to predict the modal fre-
quencies. The analytical results are then compared
with the identified results. Tab. 3 lists the prediction
and the experimental results. The root-mean-square
and the maximum of the prediction error are 1.28%
and -2.44% , respectively.

3 Conclusion

A finite element model updating method based
on the response surface model and the genetic algo-
rithm is proposed. The proposed method has two ad-
vantages. First, in the implementation of the GA, the
FEM is replaced by the RSM in the fitness evalua-
tion. As a result, the computational-intensive FEA is
no longer necessary. Secondly, the RSM is able to
demonstrate the functional relationship with visualiza-
tion, which can be employed to judge whether the lo-
cal optima exists.

A real chassis model is taken as an application
example. FEA and modal testing are performed. The
proposed method is used to update the FEM. The root-
mean-square error of modal frequencies decreases
from 4.96% to 1. 60% . Also updating qualification is
validated by assessing the prediction ability. The root-
mean-square error of prediction is 1.28% .
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