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Abstract: To improve the performance of the multiple classifier system, a new method of feature-decision level

fusion is proposed based on knowledge discovery. In the new method, the base classifiers operate on different

feature spaces and their types depend on different measures of between-class separability. The uncertainty

measures corresponding to each output of each base classifier are induced from the established decision tables

(DTs) in the form of mass function in the Dempster-Shafer theory ( DST). Furthermore, an effective fusion

framework is built at the feature-decision level on the basis of a generalized rough set model and the DST. The

experiment for the classification of hyperspectral remote sensing images shows that the performance of the

classification can be improved by the proposed method compared with that of plurality voting (PV).
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The multiple classifier fusion is an important re-
search topic with various names in different research
fields. For example, it can be called the classifier com-
bination in pattern analysis or the classifier ensemble in
neural networks. Together there are two fusion scenari-
os''!. In the first scenario, all base classifiers operate in
different parts of one feature space. And in the second
scenario, each base classifier may be allowed to operate
in different measurement/feature spaces. Obviously,
different types of features can be used effectively in the
latter case. It is important to improve the performance
of the classification in the case of lacking training sam-
ples and only a few classifiers being available.

In general, if only class labels are available, a
voting fusion'”'is often used. However, it is difficult to
make an effective fusion when only a few classifiers
are available. In this case, it is appropriate to view an
output of base classifiers as the condition that is associ-
ated with an uncertainty measure, such as the mass
function in the Dempster-Shafer theory (DST).

This paper focuses on a feature-decision level fu-
sion method in which the mass functions mentioned
above are mined by using the proposed knowledge dis-
covery approach from different feature spaces. Al-
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though one can obtain the mass function by using a
classical rough set method ', we must adopt a general-
ized rough set model because between-class separabili-
ty being used in the classification relates to a nonequiv-
alence relation.

1 Generalized Rough Set and DST

Rough set'”! can give the set approximation based
on equivalence relation on U. To nonequivalence rela-
tion on U, researchers have proposed several general-
ized rough set models”” " . The random rough set model
is one of those taking into consideration that informa-
tion may be obtained by some random experiments.

Let U and W be two finite nonempty sets, and
I. U—2” (W)\{(J} be a set-valued mapping. For any
Xe? (W), xe U, the upper and lower approximations
of X with respect to / can be defined, respectively, by

1(X) ={x:I(x) CX}, [(X) = {x: I(x) NX#}
Furthermore, define a mapping j: 7 (W)—% (U) as
JY) ={xeU:I(x) =Y} Ye7? (W)
called the relational partition function of I, where Y is
called a focus element iff j( Y) (/). Denote a family of
subsets of U as
T={j(Y) e 7 (U): j(Y) # D, YCW)

It is easy to verify that 7 forms a partition of U.
Since U is finite, the family of all measurable sets
formed from 7is ¢g-algebra, denoted by o( 7).

Theorem 1°7"  Let I: U—7 (W) \{({J} be a set-
valued mapping, and j be the relational partition func-
tion of I, then the following properties hold for any X
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I(X) = U {j(V): YCX}

I(X) =U{j(Y): YNX#}
(0 =I(X)\U{I(Y): YCX)

Suppose that 3 and 3" (3C7 (U),3' C7 (W))
are set algebra, then (U, Y) and (W, 3’) are measura-
ble spaces. The set-valued mapping I: U—Z (W) \{(J}
is called a random set if {xeU:I(x) NY#Jle 3
holds for any Y e 3'.

Research'” has shown that there exists a natural
connection between the rough set theory and the DST.
Based on the random rough set model, the connection
between the two theories can be described as the fol-
lowing theorem.

Theorem 2'""  Let I: U7 (W) \{{}} be a set-
valued mapping and j the relational partition function
of I. For 7={j(Y) e 77 (U):j(Y) #(J, YC W}, let ¥
=0(_7) and P be probability measure on (U, o(_7)).
Then [ is 3-7” (W) random set. If

m(Y) AP(j(Y))

Bel(X) & P(I(X)) = Y, m(Y)

Yox

PI(X) & P(I(X)) = Y m(Y)

YNX#=)
then m is the mass function over W, Bel and Pl are

probability and plausibility functions on W.

2 Condition Mass Function (CMF) Genera-
ted by Classification Approximating Ex-
pert Decisions

Let U={x,,x,,...,x,} be a finite universe of dis-
course or object set, A ={a,, a,, ..., a,,} be a finite
condition attribute set, and F = {f,;: t<m} be the set of
relations between U and A, where f, is the mapping f;:
U—V,(V,is the value set of attributes a,, t<<m). Then
(U, A, F) is called information system, denoted by (U,
A) for short. Decision table (DT) is a system having
the form (U,AU{d}, FU{g}), where d is called deci-
sion attribute and g: U—V,(V, is the value set of d). In
general, the DT is often denoted by (U, AU {d}) for
short.
2.1 Approximate classification with respect to the

tolerance relations on U

Based on binary equivalence relations on U,
Skowron et al. "’ investigated to induce mass function
from the classification approximating expert decisions.
However, a generalized rough set model is needed for
the computation of the mass function if the binary rela-
tion on U is nonequivalent.

Let (U,AU{d}) be a DT, 7, be the tolerance re-

lation on U with respect to A, denoted by

7,={(x,y) eUxU:d,(x,y) <h} (D
where d,(x, y) is called between-object distance relat-
ed to A and A is a fixed threshold. Let 1,: U—2 (W)
be a set-valued mapping and 7,(x) &2 {y e U: (y, x) €
7,). If we let W=U and denote by j,, the relational
partition function of /,, then for any X C U the upper
and lower approximations of X with respect to I, can
be defined by theorem 1 as

L(X) = Ul (D) YEX]} (2)

L(X) = U{j,(V): YNX#D} (3)
Furthermore, the boundary region of X with respect to
I, can be defined as

BN, (X) =1,(X)\[,(X) (4)
Otherwise, I,(x) #(/) for any x e U because of the re-
flexivity of 7,.
Let V,={1,2,....,r(d)},H={h, hy, ..., h, ., } be
the frame of discernment in the DST, where r(d) =
\ V, |(|+| denotes set cardinality). Let ¢: & (H) —
2 (V,) be the standard bijection, i.e., ¢(h;) =i for i
=1,2,...,r(d) and $(A) ={ith,eA} (ACH). The
equivalence relation on U with respect to d is defined
as R, ={(x,y) e UxU: g(x) =g(y) }. Furthermore, we
denote
X, =U/R,={X,X;, ....X,.p)}

BH, (A) = (kEQ(A)BNA(X» )n (k;;h) ~BN,(X) |
K(Y) ={keV,:YNX,#J} YeZ (U)

G,(4) = U{j,():K(Y) =¢(A) }
Theorem 3 Let (U, AU{d}) be a DT, I,: U—
2 (U)\{(J} be a set-valued mapping and j,: 7 (U)—
P (U) be the relational partition function of /,. For
any A e? (H),
I,(X) A={n}. X, e,
G,(4) £{BH,(A) [|A]>1
%) A=)
Then {G,(A) #(J: ACH} is a partition of U.
Proof [A|=1,then ¢(A) =K(Y) = {k}(k<
r(d)) iff YCX,, X, €.%,,s0
G,(4) =U{j,(Y):K(Y) ={k}} =
U{j.(N):YEX,} =1,(X,)
|A| >1, then ¢p(A) =K(Y) CV, iff VkeK(Y),
YZX, and YNX, #J, 50 j,(Y) ngQ(A)BNA(X")'MO_
reover, YN X, = when k¢ ¢p(A),i.e.,j,(Y) Qk$QA)
~BN,(X,), then
Jja(Y) €BH,(4)=G,(A) €BH,(A)
On the contrary, from Egs. (3) and (4) we have
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BH,(A)C N BN(X)C N I(X,) =
kep(A) ked(A)
keQA)U{jA(Y): YNX, # D} =
UL, 0, Ga(D: YNX DY) =
U (1) K(Y) =d(A) } =G,(A)
Therefore, G, (A) = BH,(A). From the definition of
BH,(A),if A, #A,(A,,A,SH), then Jied(4,),i¢
$(A,) such that
BH, (4,) CBN,(X;), BH,(4,) C ~BN,(X))
i.e., BH,(A,) NBH,(A,) = (. Otherwise, since for
VxeU, diedp(H) such that x e X;, then x e I, (X))

or x e AthiBHA (A),i.e., xe ALQJHGA (A). Therefore,
{G,(A) #(J: ACH} is a partition of U.

By the concept of supervised classification, we
can call .%, = {X,, X,, ...
tion, and

{Gy(Q) #(J:ACH} = {1,(X)), [,(X,), ...,

I(X,,)} U{BH,(A):ACH, |A|>1}
the classification approximating the expert decisions.
2.2 CMF based on classification approximating ex-

» X,q } the expert classifica-

pert decisions
Definition 1 Let m be the mass function over the
frame of discernment H. There exists E C H, E # ()
such that Bel( E) >0, if
m(A)
m(A | E) & ]Bel(E)
0 otherwise
then the set function m( - | E): 7 (H)—[0, 1] is called
the CMF over H with respect to the evidence E.
For any i e V,, let us denote
Y ={Yer(U):Y=1,(x),xe U, YNX,#}
Z={X, e 2y AY e Z, X, NY#D, k<r(d) }
U= U X,

Xpe 2
H ={h:X .2}
K(Y)={keV, YNX =} Ye 7,

Theorem 4 Let (U, AU{d}) be a DT, I,: U—
P (U)\{(J} be a set-valued mapping, j, be the rela-
tional partition function of I, and 7, = {j, (Y) e
Z(U):j,(Y)#, YCU}. Let 3, =o(_Z,) and P be
the probability measure on (U, 3,), then I, is 3,-

2’ (U) random set. For any H, CH, ACH, if
P(G,(A))
my(A | H) = | P(L(U))

it ACE

ACH,, P(1,(U,)) #0

0 otherwise
Bel,(A|H) = Y m,(A"|H)
A'CA
PL(AIH) = Y mJ(A'|H)
ANA#D
Then m,( - \ H,) is the mass function over H, called

the CMF with respect to the evidence H,. Bel ,( - \ H),
Pl,(- | H,) are the belief and plausibility functions in-
duced from m, (- | H,).

Proof Let P(G,(A)) =m,(A). From theorem
3, we have

Y m(A) = 3 P(G,(4)) =

ACH ACH
P(g,60) =r0) =1

then m,( +) is the mass function over H. Let Bel,(H,)
denote the belief function induced from m, ( +), then
we should prove P(1,(U,)) =Bel,(H,) further. Since

for any Ye #.,j,(Y) QIA(XU/,Xk) =1,(U,) and if

@ |K(Y) | =1,i.e.,K.(Y) ={k}, then X, €
2,; such that YCX,,s0 j,(Y)CI,(X,) =G,(h,).

@ [K(V [ >1, then K, (Y) =¢(A) CH(H)),
then YZ X, and YN X, #() for any ke p(A), X, .2,
S0

Ja(Y) CBH,(A)
Therefore,
L(U) :Ii(xkg[}Xk) QA'QJH[GA(A)

Considering

Gu(MCL( U X) ACH,
— Xpe;

i

we have
D)
Ii( xkgz,tX") _AgH,-GA(A)

LU =LY XD = U Gu(4)

PU(U)) =P( U G(4) ) = ¥ P(G,(4)) =

ACH;

Y m,(A) = Bel,(H,)

ACH;
Therefore, m,( - \ H,) is the CMF over H, Bel,( - \ H)
and P1,( - | H,) are the belief and plausibility functions
induced from m,( * | H)).

3 Knowledge Discovery-Based Multiple
Classifier Fusion (KD-MCF)

To c-class problems, let U = {x,, x,, ..., x,} be the
set of symbols corresponding to the c-class training
sample sets, V, ={1,2, ..., c}(c =r(d) <n) be the la-
bel set of the ¢ classes, H = {h,, h,, ..., h.} be the
frame of discernment and Aj(j =1,2,...,N) be the fea-
ture set for the j-th classifier. Then the N DTs corre-
sponding to N classifiers can be established, denoted by
DT,, DT,, ..., DT,. From each DT, one can acquire the
¢ CMFs over H.

For an input pattern, let L = {/,, L,, ..., [} denote
the output of the classifier set, K, = {k: k = l,,j =1,2,
..., N} be the class label set corresponding to L, where
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I, eV, is the output of the j-th classifier. To the classi-
fier set, the decision assigning an input pattern to a
class s (s € K;) depends on the combination of all the
CMFs relating to L. Therefore, the fusion method using
the CMFs may be viewed as a feature-decision level
fusion and the corresponding algorithm can be designed
as follows:

(D Establish N DTs with N feature sets. Suppose
that pattern feature vectors include m independent
standard normal variables. To avoid loss of classifica-
tion information, the values of attributes ought to be
taken statistical parameters such as (u,(?), o,(1)) or
(u, (1), 0,(1)) instead of discrete values in DT. Here,
wu, (1), o, (1) represent, respectively, the mean and
standard deviation of the #-th feature corresponding to
the p-th sample set.

@ To the DT, define the tolerance relation T,
and /, with an appropriate measure of between-class
distance.

@) Select the appropriate classifiers for each kind
of between-class distance. For example, the maximum-
likelihood classifier (MLC) may be used corresponding
to Bhattacharyya distance'™ .

@) Compute 1 Aj( j=1,2,...,N) and the approximate
classifications {G, (4) #(: ACH} from the N DTs.

® Given the probability distribution on U, then
my,(AIH) (j=1,2,..,N; [;=1,2, ...,¢) can be
calculated for each classifier by using the approximate
classifications and theorem 4. For example, let P be
the uniform probability distribution on U, then for any
A e (H) we have
G, (4) |
PGy () =

> 1G4

ACH;

P(IAj(Ui)) = ‘U‘
SO

G, (4) |
my(ALH) ={ 3 [G,(4) |

= ;i

(5)
0 otherwise

® Fuse the CMFs corresponding to L using
Dempster-Shafer’s rules. Let m,; denote the orthogonal
sum of these mass functions and e, the evidence corre-

sponding to L, then
m(Ale) =m, (AIH)®...®m, (A|H,)(6)
(D Assign an input pattern to a class label s(s e

K,) if

F (hy) = {E%(FL(M)) (7)

where F,(h,) is called the heuristic fusion function'”’
corresponding to e, which is defined as

F,(h) =aBel(h|e,) + (1 —a)PI(h,|e,) (8)
where a € (0.5,1], Bel(h, | e,) and PI(h, | e,) are
the belief and plausibility functions induced from m,
(Ale)).

Assign an input pattern as unclassified when
the corresponding m, cannot be obtained.

Fig. 1 illustrates the multiple classifier fusion
framework, where m_,.,],( l,e (1,2, ..., c}) denote the
CMF corresponding to what the j-th classifier outputs
class label /;e K, ,1.e., m, (A | H, ).

Fusion Output
center

?

Evid.enc'e lm| Decision
combination rules

Fig.1 Framework of the KD-MCF method based on DST
and CMFs

4 Experiment

The experiments are conducted on the hyperspec-
tral image cube ( provided by China Coal-ARSC,
Xi’an, China) that includes 80 bands with wavelength
from 455.7 to 1 642.4 nm. According to the ground
truth, three vegetation types and nine regions of inter-
est (ROI) were selected from the image cube and
three of them remained as test regions. The label set of
the three vegetations and the number of corresponding
samples are shown in Tab. 1.

Tab.1 Lable set of three vegetation types and
the number of corresponding samples

Land Class Sig.ns: of NunTb'er Num?er
training of training of testing
cover label . . .
pixel sets pixels pixels
Vegetation 1 1 X1, Xy 91(x;) +108(x,) 386
Vegetation 2 2 X3, X3 114(x;y) +103(xy) 333
Vegetation 3 3 X5, Xg 76(xs) +85(xq) 341

Applying PCA to the original image cube and its

. . . 10
second derivative images''"

, two feature sets A, A,
were generated. Here, the second derivative images re-
late to 10 bands with wavelengths from 663.9 to
767.1 nm. A, consists of five dominant principle com-
ponents ( PCs) extracted from the second derivative
images and A, includes three dominant PCs extracted
from the original image cube. Another feature set A,
consists of the original 80 bands and a statistical pa-
rameter. Thus, three DTs corresponding to the feature

sets can be established as Tabs. 2, 3 and 4. The set
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values corresponding to random sets /, , /,, and I, are

calculated, respectively, with the tolerance relation.
Tab.2 DT, corresponding to MLC, and PCs (A,)

U  a/107° a,/107° a,/107°  a,/107 a;/107° d
x (=27.5,4.1) (-5.5,2.4) (1.6,1.3) (0.2,1.1) (0.6,1.0) 1
x, (-18.1,2.9) (-6.7,1.2) ( =0.6,0.7) (0.0,0.7) (0.1,0.6) 1
x; (-16.9,2.8) (2.4,1.3) (3.1,1.0) (1.7,0.8) (0.5,0.5) 2
x, (-15.3,3.8) (3.5,0.9) (2.6,1.1) (2.0,1.0) (1.1,0.5) 2
xs (-26.8,5.7) (2.5,2.0) (4.8,1.8) (1.7,1.6) (0.5,1.3) 3
X (-26.5,4.4) (2.4,1.1) (3.5,1.3) (2.0,1.4) (0.7,1.0) 3
Tab.3 DT, corresponding to MLC, and PCs (A,)
U a, /1073 a,/1073 a; /1073 d
X, (670.9,92.2)  (25.1,20.6) ( -0.6,7.6) 1
X, (438.7,61.5) (-5.0,14.6) (-2.1,3.8) 1
X3 (464.4,60.9) (-5.6,11.1)  (26.0,4.0) 2
x, (360.1,91.9) ( -0.8,16.4) (6.2,4.6) 2
X5 (597.4,127.6) (132.4,34.7) ( -35.0,9.0) 3
Xe (609.7,86.0) (100.0,15.1) ( -26.9,8.5) 3

Tab.4 DT, corresponding to SAM and A,

U a; ag ag, d
X 0.21 0.38 0. 022 1
X, 0.23 0.39 0.017 1
X3 0.21 0.38 0.018 2
Xy 0.27 0.39 0. 020 2
Xs 0.22 0.37 0. 035 3
Xg 0.21 . 0.37 0. 021 3

Note: a,(x,) =u,(]) and ag,(x,) =p,(rad) (/=1,2,...,80;p=1,2,
..,0).

={(x,,x,) eUxU:d, (x,,x,) <1.5}
,={(x,,x,) eUxU:d, (x,, x,)<1.5}
T, ={(x,,x,) e UxU:dy(x,,x,) <1}

The results are shown in Tab. 5. Here, d, , d,, are the

Ta

Ta

Bhattacharyya distance with respect to feature sets A,,
A,, respectively, which have the form in Ref. [8]. d,
is the similarity measure defined by
B,.p,) -1 - >
d(x,.x,) :ﬁ’ B, pe,) =cos (M)

where o, = {u, (1), u,(2), ..., u,(m) } is the mean
vector of training set x,. p, is the spectral angle'™
bound between the training pattern vector and u,, in
which 70% training samples corresponding to x, is in-
cluded. The values of p,(p=1,2,...,n) can be ob-
tained by statistical experiment. Suppose P is the uni-
form probability distribution on U, then the CMFs
over H={h,, h,, h,} are induced from the three DTs
and shown in Tab. 6, respectively.

Tab.5 Set values of 7, ,1,, and I,

Xy {x3, x4, %6 } {x, x4} {xs}
X5 {x3, x5, X6} {x5, %6 } {x1, x5, x5, X6 }
Xe {x3, x4, x5, X } {xs5, %6 } {x1, x5, %6 }

U Iy, Iy, Iy,

X {x} {x;} {xp, x5, X6}
X {x} {x2, x4} {x, x5}
X3 {3, x4, X5, X6 } {x3} (x5, x5, x5}

Tab.6 CMFs induced from DT,, DT, and DT,

A my,  m, my m, M, M, My My Ny
{h,} 1 0 0 174 174 0 0 0 0
{h,} 0 0 0 174 174 0 1/6 1/6 1/6
{hs} 0 0 0 0 0 1 0 0 0

{hy, hy} 0 0 o 172 172 0 1/6 1/6 1/6
{hy, hy} 0 0 0 0 0o 173 1/3 1/3
{h,, h} 0 1 1 0 0 1/6 1/6 1/6
{hy, hy,hs} 0 0 0 0 0 0 1/6 1/6 1/6

The classifier set consists of two MLCs and a
spectral angle mapping (SAM) '™ because the Bhatta-
charyya distance and spectral angle are used. To sim-
plify, all land covers are classified into three catego-
ries by the MLCs with no threshold and by SAM with
a large angle threshold (0. 1 rad) such that all training
samples are classified.

The classification accuracy comparisons are
shown in Tabs. 7 and 8, where PC,,, represent the
twenty dominant PCs extracted from the original im-
age cube. Coefficient « in Eq. (8) is taken 0. 6. Com-
pared with MLC and plurality voting (PV) ', the pro-
posed KD-MCEF is the best one in classification per-

formance.
Tab.7 Classification accuracy on training areas %

Classifier =~ MLC, MLC, SAM MLC

Feature set  (A;) (4,) (A3 PCpy
Unclassified 0. 00 0. 00 0. 00 0. 00 1.21 0. 00
Vegetation 1~ 90.95 100.00 94.47 100.00 96.98 100.00
Vegetation 2 93.09 97.70 89.86 100.00 98.16 100.00
Vegetation 3 100.00 90.68 91.93 100.00 96.27 100.00

PV KD-MCF

11
Overa 94.28 96.53 92.03 100.00 97.23 100.00
accuracy

Tab.8 Classification accuracy on test areas %

Classifier MLC, MLC, SAM  MLC

Feature set  (A;) (Ay) (A;)  PCiy
Unclassified 0. 00 0.00 0. 67 0. 00 10. 74 0. 86
Vegetation 1 54. 15 97.71 87.82  98.96 94. 56 91.71
Vegetation 2 94.89  67.27 41.44 28.53 77.18 98.20
Vegetation 3 99. 38 54. 63 59.88 100.00 71.60 94. 44

Overall

PV KD-MCF

81.21 72.39 64.33 76.80 81.88 94.63
accuracy

5 Conclusion

The experiment for the classification of hyper-
spectral remote sensing images shows that the pro-
posed KD-MCF method surpasses PV in classification
performance. The KD-MCF method has two attractive
characteristics. First, the discovered knowledge is not
ambiguous but transparent. And the other one is that
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the CMFs are induced automatically from DTs. How-
ever, the research of this paper is merely preliminary.
Some problems, such as finding diverse feature sets
that complement each other and estimating the proba-
bility distribution on U need to be researched further.
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