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Identification of dynamic systems
using support vector regression neural networks
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Abstract: A novel adaptive support vector regression neural network (SVR-NN) is proposed, which combines

respectively merits of support vector machines and a neural network. First, a support vector regression approach

is applied to determine the initial structure and initial weights of the SVR-NN so that the network architecture is

easily determined and the hidden nodes can adaptively be constructed based on support vectors. Furthermore, an

annealing robust learning algorithm is presented to adjust these hidden node parameters as well as the weights of
the SVR-NN. To test the validity of the proposed method, it is demonstrated that the adaptive SVR-NN can be
used effectively for the identification of nonlinear dynamic systems. Simulation results show that the

identification schemes based on the SVR-NN give considerably better performance and show faster learning in

comparison to the previous neural network method.
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Multilayer feedforward neural networks ( MFNN)
provide good approximations when applied to highly
nonlinear and complex systems'''. However, the net-
work is hindered by problems associated with weight
optimization such as slow learning and local minimiza-
tion. Furthermore, good generalization results are ob-
tained only if the structure of the network is suitably
chosen. Therefore, selecting the best structure of the
neural networks is an important problem.

At present, the support vector machine ( SVM)
may tackle classification and regression problems and it
has been applied as an alternative to conventional arti-
ficial neural networks'>™'. To guarantee the generaliza-
tion ability on the process of learning, the SVM uti-
lized the natural learning algorithms i. e. structure risk
minimization principle'*’. The solution of the SVM is
unique, optimum and absent from local minimums un-
der some limited conditions compared to traditional
neural networks. But selection of the kernel parameters
of the SVM is very flexible. We determine the kernel
parameters by experimental methods such as cross-vali-
dation etc"'.

In order to solve the above problems, a novel
adaptive support vector regression neural network
(SVR-NN) is proposed. In the proposed method, the
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initial structure of the SVR-NN is obtained by a sup-
port vector regression ( SVR). Because an SVR ap-
proach is equivalent to solving a linear constrained
quadratic programming problem under a fixed structure
of the SVR, the number of hidden nodes and initial
weights of the SVR-NN are easily obtained. Then, an
annealing robust learning process is used as the learn-
ing algorithm to adjust these hidden node parameters as
well as the weights of the SVR-NN!*""

To encourage sparseness so as to obtain good net-
work structure adaptively, an SVR approach with the &-
insensitive loss function can approximate the unknown
functions by constrained minimization for a given pre-
cision level of the modeling error. In the constrained
minimization, kernels corresponding to data points that
are within the error bounds are removed. The SVR is
formed by the retained kernels, and the data points as-
sociated with the retained kernels are referred to the
support vectors'>*'.

Since £-SVR'™? or p-SVR"' provides an esti-
mated function with error bounds, the initial structure
of the SVR-NN can be well obtained by the SVR ap-
proach that just provides better initialization. Further-
more, the kernels of the SVR are similar to the basis
functions of the radial basis function (RBF) network
with scatter partitioning. Hence, an annealing robust
learning algorithm is further applied to fine tune these
parameters of hidden nodes and weights of the net-
works.

The effectiveness of the proposed method is veri-
fied by three simulation examples.
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1 Support Vector Regression Neural Networks

1.1 SVMs for regression

In general regression formulation and unknown
function estimation, the goal is to estimate an un-
known real-valued function based on a finite number
set of samples (x,,y,) (i=1,2,...,1), where the g-di-
mensional input x € R? and the output y e R.

In the SVR approach, the SVM provides a
means of solving nonlinear modeling problems by
transforming them to linear ones in some high-dimen-
sional feature space which is related to the input data
space via a prior selected nonlinear mapping and the
quality of estimation is measured by the loss function.
A new type of loss function called the e-insensitive
loss function'” is an attractive choice in the imple-
mentation of the SVR since selecting the value of &
controls the numbers of support vectors, which intro-
duces sparseness to the final model solution.

The linear g-insensitive loss function is defined
as

L,(y,f(x,w)) =max(0,y —fx,w) | —&) (1)

A linear model is then constructed in the feature
space and the linear model f(x, w) is given by

m

flx,w) = zwkd)k(x) +b (2)

k=1

where ¢( -) denotes a set of nonlinear mapping, and b
is the “bias” term. The inclusion of the constant term
b depends on whether the bias is regularized or unreg-
ularized.

The weight vector w and threshold b for the line-
ar g-insensitive support vector regression are chosen to
optimize the following problem:

1 1 2 l *
min -l +CX (& +ED) (3)

yi —fx,w)<e+§&
subject to {flx;, w) -y, <& +¢;
.67 =0 i=1,2,...,1
The corresponding dual problem can be derived
using the standard techniques

! I
maXZ(a, -,)y; —gZ(ai -a) —
= i=1

23 G - a) (& ) K(x, %) (4)

i,j=1
1

subject to Y (o, ) =0, ¢ € [0,Cl; i =1,2,...,1
i=1

Considering the corresponding Karush-Kuhn-
Tucker (KKT) complementarily conditions, we solve
the above quadratic optimization problem, the corre-
sponding regression function is also given by

flo) = Y (o —a)K(x,0) +b (5)

where b is chosen so that f(x,) —y, = — ¢ for any i
with 0 <o, —a, < C.

Note that p is the number of some of (o; —¢;")’s
which are not zeros and the corresponding vectors x,’s
are called the support vectors.

To automatically tune the size & of the tube, one
of the attractive features of the £-SVR is the ability to
reformulate the problem so that the regularization pa-
rameter specifies the fraction of support vectors in the
so-called p-support vector machine'” .

1.2 SVR-NN model

The output of the SVR approach is a linear func-
tion of the weights and kernels. The weights and the
structure of the SVR are obtained simultaneously by
constrained minimization for a given precision level of
the modeling error, avoiding inner products being per-
formed in the feature space, since via the theory of re-
producing kernel hibert space ( RKHS)!"", they
have an equivalent kernel in the input space, provided
certain conditions hold.

The selection of support vectors in the SVR ap-
proach can be viewed as the definition of the hidden
layer neurons of an RBF neural network, and the num-
ber of hidden neurons corresponds to the number of
support vectors selected in the feature space. Hence,
the resulting SVR network can be represented as a no-
vel adaptive SVR-NN. The weights and center vector
and width of the hidden node can also be optimized
by learning algorithms of neural networks to overcome
the biased problem of the SVR. By selecting different
kernel functions and using the kernel trick, we may
construct different types of the SVR-NN.

For an ordinary neural network, the feature space
remains hidden and is never explored, but the main at-
tribute of the SVR-NN gives new insight into neural
networks. The architecture of the adaptive SVR-NN
based on the support vectors is shown in Fig. 1. The
generalization of different kinds of the adaptive SVR-
NN may be obtained by choosing the appropriate ker-
nel function which fulfills the Mercer theorem'™
such as Polymonial function, B-spline function etc.

In this paper, we select the Gaussian kernel func-
tion in the SVR-NN model, then Eq. (5) can be re-
written as

p 2
fx) = Y (q —&j)exp( _sz—izvjll)”, =
' Y

j=1
- ’ X = : ’
Swe( <1010 )
j=1 2y
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Fig.1 The architecture of the proposed SVR-NN based
on support vectors

From Fig. 1, it is shown that the above SVR-NN
given by Eq. (5) can be regarded as a two-layer neu-
ral network linear in its weights. It is intuitive to re-
formulate it as an RBF network using normalized ba-
sis functions!™ ',

After the support vectors of the SVR-NN are ob-
tained by £-SVR or »-SVR, some learning algorithms
such as the least-squares method or the gradient de-
cent learning algorithm may be applied to adjust the
parameters of the Gaussian function and the synaptic
weights for an improved approximated performance.
However, most of the traditional neural network ap-
proaches may be easily affected by outliers. An ad-
vanced annealing robust learning approach is proposed
here to overcome these problems of the traditional
neural network approaches for function approxima-
tion.

2 Training of Adaptive SVM-NN

To train the adaptive SVR-NN with Gaussian ba-
sis functions, the annealing robust learning algorithm
is proposed to solve the overfitting problems in neural
network learning. A cost function for the SVR-NN is

defined here'®:
1

E - e _ oy, el(1)
Y otenin(n) = 345 n[“w)]

(7
where ¢ is the epoch number; ¢,(f) =y, —f(x,) is the
error between the i-th desired output and the i-th out-
put of the SVR-NN at epoch #; u(?) is a deterministic
annealing schedule acting like the cut-off points; and
o(+) is a logistic loss function.

The initial j-th hidden node center vector of the
SVR-NN is the j-th support vector. Refer to Fig. 1.

We have v, = {v,,,v,,, ..., v;,,} ', and the initial width

i=1

vector {y,, ¥, ---» Y, }" of the hidden node is taken as
the width y of the Gaussian kernel function.
Based on the gradient-decent kind of learning al-

gorithms, the weights w;, the centers v; and width v;
of the hidden layer node are updated as

Al = o ey expf - X
: awj 2y;
(8)
j ¢ Xn "V
Av, ;= —m = =npleim)w; — 5=
J J
| x-v|*
exp| -————5—— (9
2'yj
OE, Ak
A L= - -1 = , l - J = .
')’_1 T, B’y] Mp< e/ /'L) W_] yj3
lx-v|°
exp| —————~ — (10)
Z'yj
do(e;(1);u(1)) e;(1)
wherep(ej;,u) = = 2 > M
de; (1) 1 +e; (1) /(1)
is a learning constant, and n=1,2, ..., g.

Update the weights and hidden node parameters
of the SVR-NN according to

wi D =w P e pew! +a(w' P - w0 (1)
v =y sy + (v =) (12)
7" =y mdy ey -y (13)

Because of the existence of the logistic cost func-
tion, p(e;; ) is usually called the influence function.
They have a great impact on the approximation results
when outliers exist. When the decay is too quick, the
approximation of the majority data may not have
enough time to converge and the training data may
mostly be degraded. If the decay is too slow, the ro-
bust learning algorithm may not be timely enough to
discriminate against those outliers before overfitting
occurs.

The suitable annealing schedule u(?) = A/t is
founded experimentally to achieve the best perform-
ance in the annealing algorithm, where A is a con-
stant. To determine the values of annealing schedule
u(1) =A/t for any ¢ epoch in our experiments, A is set
as 2max{ | e, |4} according to Ref. [6].

3 Application to Identification of Nonlinear
Dynamic Systems

To illustrate the performance of the presented
adaptive SVRNN approach, three numerical instances
are provided. The accuracy of the model is assessed
using root mean square error (RMSE). The learning
rate i is chosen as 0. 04 and the momentum coeffi-
cient is 0. 6 in these instances.

Example 1 The example is taken from Naren-
dra and Parthasarathy!"”’ in which the plant to be
identified is given by the second-order nonlinear
difference equation,
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YiYio1 (¥ +2.5)
Ve =7 e e
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From the plant model (14), 500 simulated data
points are generated. The first 400 data points are ob-
tained by assuming a random input signal uniformly
distributed in the interval [ — 1, 1], and the last 100
data points are obtained by using a sinusoid input sig-
nal, i.e., u, =sin(2wk/25). We use the first 400 data
points to build an identifier model based on the SVR-
NN and the performance of the SVR-NN model is
verified using the remaining 100 data points.

Yi» Yi_ and u, are selected as the input variables
and the parameters in £-SVR are set as £ =0. 15, C =
3, the Gaussian kernel function with y = 1. First, an
initial structure of the adaptive SVR-NN with the hid-
den nodes (i.e. the number of support vectors) is ob-
tained as 36 by an £-SVR approach. Hence, the SVR-
NN model consists of 36 radial basis functions with
three-dimensional premises and the resulting structure
of the SVR-NN model is NN, 5.

These parameters of the SVR-NN are then adjus-
ted by the robust learning algorithm. The maximum
number of the training epochs needed is set as 60 and
the error convergence curve is also shown in Fig. 2.
The RMSE is 0.0289 in the training region and the
RMSE is 0.062 5 in the test region, respectively. The
final result of the SVR-NN in the test set is shown in
Fig.3.

u, (14)
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Fig.2 Error convergence curve of adaptive SVR-NN
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Fig.3  Output of plant (solid line) and identification
model based on SVR-NN (dashed line)

Obviously, it can be seen that the output from the
identified model attains a fairly good match with that
of the actual model in the test set. Hence, the adaptive
SVR-NN shows good approximation accuracy for the
nonlinear system model.

In the example, only 400 data points have been
used to identify the model in the training data region;
while in Ref. [13], 10° data points have been used to
identify a corresponding multilayer feedforward neural
network model, which has two hidden layers. If the
number of data points used to build the model is in-
creased, the performance of the identified model based
on the SVR-NN can be further improved.

Example 2 Consider the gas furnace data of
Box-Jenkins''*'. The data is well known and frequent-
ly used as a benchmark instance to illustrate identifica-
tion algorithms. The data set consists of 296 pairs of
input-output measurements taken from a laboratory
furnace with a sampling time of 9 s. The process input
u, is the methane flow rate and the output y,,, is the
percentage of CO, in the off gas, respectively. We use
a total of 296 data points: the first 250 for training and
the remaining 46 for checking. A number of research-
ers concluded that a structure of the dynamic model
for this system is

Yier =SV uy3) (15)

We apply SVR-NN to the above dynamic model
and the parameters in £-SVR are set as £ =0. 15, C =
1, the Gaussian kernel function with y =1. First, an in-
itial structure of the adaptive SVR-NN with the hidden
nodes (i. e. the number of support vectors) is obtained
as nine by an g-SVR approach. Therefore, the resul-
ting structure of the SVR-NN model is NN, ;.

All the parameters of the SVR-NN are then ad-
justed by the robust learning algorithm. When the
number of training epochs needed is 160, the RMSE is
0. 044 in the training region and the RMSE is 0. 118
in the test region, respectively. The corresponding
training error convergence curve is also shown in Fig.
4 and the final result of the SVR-NN in the whole da-
ta set is shown in Fig. 5.

It can be seen from Fig. 5 that the performance is
also very good. The approximation power of the mod-
el can be appreciated if we compare the achieved
modeling performance (MSE) with other results'"’.
Example 3 In the example, the input is seen to
occur nonlinearly in the difference equation describing
the plant. The plant has the form'"!

#kyi i (16)
A series-parallel identification model based on

Yiv1 =
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Fig.4 Error convergence curve of adaptive SVR-NN
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Fig.5 Output of the actual gas furnace model ( solid
line) and the identified model (dashed line)
the SVR-NN can be applied, which is described as
)A’k+1 =NNLYG Yeors Yeoas U Uy ] (17)
Hence, the adaptive SVR-NN model has five in-
put variables and one output. From the plant model
(16), 1600 simulated data points are generated. The
first 800 data points are obtained by assuming a ran-
dom input signal uniformly distributed in the interval
[ -1,1], and the last 800 data points are obtained by
using a sinusoid input signal, i. e. ,

sin% k<500
e = 2k 2k (18)
. ey . T
0. 8sin 250 +0. 2sin o5 k>500

The first 800 data points are used to build an
identifier model based on the SVR-NN. The perform-
ance of the SVR-NN model is verified using the re-
maining 800 data points. The parameters in £-SVR are
set as £ =0. 15, C =1, the Gaussian kernel function
with y = 3. First, an initial structure of the adaptive
SVR-NN with the hidden nodes (i. e. the number of
support vectors) is obtained as 14 by an g£-SVR ap-
proach. The initial result with £-SVR of SVR-NN in
the test set is shown in Fig. 6 (dotted line). There-
fore, the resulting structure of SVR-NN model is
NNy 4

These parameters of the SVR-NN are then adjus-
ted by the robust learning algorithm. When the num-
ber of the training epochs needed is up to 600, the

corresponding RMSE is 7.6 x 10 in the training re-
gion and the RMSE is 2. 18 x 10 ~* in the test region,
respectively. The error convergence curve is also
shown in Fig. 7 and the final result of the SVR-NN in
the test set is shown in Fig. 8. Besides, it can be seen
that the output from the identified model attains a fair-
ly good match with that of the actual model in the test
set. Hence, the adaptive SVR-NN shows good approx-
imation accuracy for the nonlinear system model.
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Fig. 6 Initial identification result with £-SVR ( dotted

line) and output of actual model (solid line)
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Fig.7 Error convergence curve of adaptive SVR-NN
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Fig.8 Output of adaptive SVR-NN (dotted line) and ac-
tual model (solid line)

4 Conclusion

A novel adaptive SVR-NN is derived from sup-
port vector regression. In the proposed approach, an &-
SVR approach is used to determine the initial structure
of the adaptive SVR-NN and an annealing robust
learning algorithm is then applied to adjust the weight



Identification of dynamic systems using support vector regression neural networks 233

as well as the parameters of hidden nodes of the SVR-
NN. The main advantage of the SVR-NN is that its
structure and initial parameters may be adaptively se-
lected based on the support vectors. As these support
vectors are usually scattered over the input space,
good generalization results can be obtained using fe-
wer hidden nodes. The SVR-NN with the robust learn-
ing algorithm not only has fast and stable convergence
performance and precision, but it can also suppress the
overfitting phenomena when the training data include
outliers.

Experimental results confirm that the identifica-
tion schemes based on the SVR-NN give considerably
better performance and show faster learning in com-
parison to previous methods. Furthermore, the SVR-
NN can also be used as adaptive controllers for non-
linear systems. In conclusion, the adaptive SVR-NN
exhibits powerful function approximation capabilities,
reasonable identification and prediction power for sys-
tem modeling.
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