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Abstract: To screen for molecular signatures that are commonly dysregulated in subtypes of a certain cancer, a

novel meta-analysis is designed to perform rank score (RS) on lists of genes that are derived from different

studies. RS is a promising way to detect signatures across platforms when integrating with one vs. all (OVA) or

one vs. one (OVO) schemes of comparison. Among six published microarray expression datasets on acute

leukemia, the biological signals hereafter provide stronger clustering support than systematic differences among

microarray platforms. Moreover, the pediatric BCR _ ABL specific genes can be used to correctly discriminate
independent adult BCR _ ABL cases. The obtained results redound to discover, validate and treat the subtypes

from microarray gene expression profiles of cancer, which have been plentifully researched, such as leukemia.
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Leukemia is a malignant cancer that originates
from precursor blood cells in the bone marrow. Treat-
ment for leukemia is complex and highly dependent on
the special disease type. Gene expression profiling
combined with advanced bioinformatics has begun to
disclose the genes enacting specific biochemical events

1

leading to special types of leukemia'', as well as the

changes in gene expression caused by specific treat-

2
ments'”

. Diagnosis of leukemia involving multiple
categories is generally more difficult than in the case of
two categories. It is also more difficult to differentiate
subtypes of cancer with similar biomolecular pictures
than those with distinctive appearances. Although leu-
kemia is among the best-studied cancers on microar-
ray, there are special subtypes which cannot be classi-
fied with high accuracy, such as ALL cases bearing
the t(9;22)(BCR _ABL) translocation"'.

First, we investigate how to compare gene lists
obtained from different studies. Given the increased
availability of gene expression profiles on leukemia,
there is a new chance and challenge to reuse, merge
and compare these data to calibrate knowledge of leu-
kemia. It has been widely accepted that meta-analysis
is a way to identify differentially expressed genes

among tumor types across microarray platforms'* ™.
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The question as to whether the results of gene expres-
sion measurements obtained by different platforms can
be compared has been addressed'”™. In contrast to pre-
vious research, which integrated expression measure-
ment of gene profiles from individual studies, we ad-
dress the problem of how to combine the statistics of
all measured genes obtained from different studies for
further analysis of classification.

Secondly, we investigate how to detect the impor-
tant genes with regard to a certain subtype in the leuke-
mia community with multiple phenotypes. One can
yield a set of genes by using a one vs. all (OVA)
scheme for subtype classification”""". But what does it
mean when some of these marker-genes of subtype A
also discriminate other subtype B from the rest?
Overlaps in the gene list are to be expected because the
signatures of a distinctive group besides A and B will
strongly affect the cases labeled as “not A” as well as
“not B” by the OVA scheme. In the leukemia world,
T-ALL is the extruding subtype. We use two ways to
eliminate these overlaps, since we just want sets of
genes that are specific for the given subtype. One meth-
od is to find intersections between the OVA compari-
sons and discard the inter-type overlapping genes. An-
other way, which is more promising but seldom used in
the context of microarray data analysis before, is to re-
ally perform one vs. one (OVO) analysis for subtypes
and only keep inner-type intersections of genes.

Compared to OVA comparisons, where the “all
other subtypes” may combine on an unbalanced ex-
pressed level of subtypes, OVO comparison specifies
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the detection of differential expression for given sub-
types of leukemia. We apply our method to six mi-
croarray studies involving one on leukemia drug re-
sponse, one on subtypes of adult leukemia, and four on
subtypes of pediatric leukemia. The result shows that
the OVA-RS or the OVO-RS scheme yields more sen-
sitive and reliable clusters, based on biological features
rather than on systematic differences among different
Affymetrix microarrays. We also validated those mark-
er-genes for subtypes of leukemia on an independent
study.

1 Materials and Methods

1.1 Data collection and processing

We collect microarray data produced on Affy-
metrix arrays published recently. The datasets used in
this study are all publicly available. Of these, we use
five!™"" =™ for identifier detection and one for identifier
validation'™ .

For all these datasets, profiles are of mRNA sam-
ples. The preprocession, such as background correc-
tion, normalization, summarization and quality assess-
ment on all those microarray datasets, are independent-
ly based on Affymetrix platform preprocessing proto-
col. We normalized the raw probe expression values by
variance stabilization and subsequently summarized the
probe values into one probe set/gene expression value
using median polish''”' . Thereafter, our expression data
have a generalized logarithmic scale, meaning that ad-
ditive differences correspond to fold-changes on this
scale.

1.2 [Initial data analysis

We assign leukemia samples to groups according
to their diagnostic subtypes given by the original au-
thors. Then we exclude the subtypes which contain less
than eight samples from one study. A fold changes
(FC) test is conducted as two-sided for differential ex-
pression analysis. Let the vector y' e {A’, B, C?, ...}
contain the subtype labels of patients and matrix E¢ =
(efj) contain the actual expression data in study d. The
expression data has been normalized as described above
and has a logarithmic scale. Note that on this scale, ad-
ditive differences correspond to FC in actual molecule
abundance.

Given a study d and a pair of diagnostic groups,
we compare the expression levels of patients in group
A to those in group B for each gene. To this end, we
calculate the differences between two groups:

fl=e(AY) —e,(B)

where e,(A”) and e,(B’) denote the average expression
of gene i in group A and B, respectively. This vector of
fold-change statistics f! is afterwards called as entity in
this paper.

In order to compare the entity f/ to FC statistics
expected by chance, we observe N permutations of the
class labels and compute empirical p-values'” . To this
aim, we randomly shuffle the class labels y* in each
study N( =1000) times. From the randomized data, we
calculate sets of entities in the same way as for the
original data. Thus we get N vectors of randomized val-
ues of FC f',n=1,2, ..., N for each entity, from which
we derive empirical p-values:

pi=1-N"{f <f} ]
where | - | denotes cardinality.

This yields two kinds of matrices for each study
d, one of FC statistics F* = (f,) and another of empiri-
cal p-values P’ = (p},). The columns k' e 1,2, ..., K*
hold the K pairwise entities between groups, and rows
correspond to transcripts in study d.

1.3 Rank scores

Microarray data from different platforms are
thought to be not directly comparable, because they of-
ten use distinct reference samples and different proto-
cols. Even for those different studies using the same
platform and analysis technique, it is still difficult to
compare their values directly. The idea of “rank score”
is driven from the “median rank score” for measure-
ment of gene expression across multiple studies'”’. In
this paper, we apply it to gene entities before perform-
ing meta-analysis.

First, we reduce the entities in all studies to those
transcripts, whose expressions have been measured on
all microarrays in the five studies. The matching is
done using the spreadsheet given by Affymetrix online
support. A number of 8 620 “best match” transcripts are
common to all studies.

To render statistics that come from different plat-
forms comparable to each other, we build a numerical
scale from all entities and all common transcripts. Hav-
ing calculated all the possible entities in five studies,
we yield the integrated FC matrix X = (f;),k = 1,2,

ooy 2 K combining of each F = (f}), according to
d

the common transcripts. We separately sort all entities
by their transcripts’ FC values. Then for each rank, we
take the mean value over all entities’ values at each
rank regardless of the transcripts annotated there. This
yields an entity of reference values r. Next, for each o-
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riginal entity, we map them to a fixed numerical scale
to generate a matrix of rank score (RS) X" =(x;;) ac-
cording to their ranks:

x.*k =sort(f ;) [rank(f,)]

where sort(f,) takes the mean value across all the
samples for each rank. Thereafter, all entities from five
data sets contain comparable statistics on the same nu-
merical scale.

1.4 Clustering subtypes of leukemia

After making entities and putting them on the
same scale, we investigate how to identify subtypes of
leukemia to detect the genes that are specific for the
given subtype. Using the OVA method, we know which
signature belongs to which subtype and then classify
the across-study-entities according to their subtypes.

In contrast, we need to identify the cluster of sub-
types for those OVO pairwise comparisons. To this
end, we cluster all entities, and then identify subtypes
represented by these clusters such that the most com-
mon subtypes belong to it. Therefore, we adjust the
RS: Treat non-significantly changed values similar to
unchanged values in each entity to filter out noise.
First, we take the absolute RS because that A" vs. B
from one study should be clustered with A” vs. B*
from another study. Secondly, the FC test can detect
genes of interest, but it has the obvious disadvantage in
that it does not provide an estimate of significance for
the observed changes and thus the necessary cutoff val-
ues'"®! . Therefore we filter the non-significant changed
genes in each entity. Given a significant threshold 7,
we define the matrix of signatures S as

1 Py <T, [, =0
s ={ —1 Py <T, [y <0
0 pu=T
where p,, is the element of the integrated p-value ma-
rix P = (p,).k =1,2,..., Y, K', combining of P,

d
and f, is the element of the integrated FC-value matrix

X. Thus one element of S is a signature that the corre-
sponding transcript significantly changed in the corre-
sponding entity. Thereafter, every element of the RS is
multiplied by the corresponding element in S as

Vi =Xy S

In this way we filter the RS into an adjusted RS
(ARS):Y =(yi,).

Then bottom-up hierarchical cluster analysis is
performed to find clusters of OVO entities based on the
matrix Y. Note that each entity (column) in Y is a pair-
wise entity of one subtype vs. another. Euclidean dis-

tance between the columns of Y is taken for clustering
using complete linkage. Note that we cluster entities
that refer to pairs of subtypes. In the event that the ma-
jority of entities in one cluster involved a special sub-
type of leukemia, we argue that this cluster represents
the molecular characteristics of such a subtype, and
thus label that cluster accordingly. Therefore, we can
assign each entity a label of subtype. To this end, we
set the desired number of clusters ¢ =16 to the number
of subtypes of interest. Then we identify subtypes re-
presented by these clusters such that the most common
subtype belongs to it. For example, if a cluster consists
of nine entities which referred to T-ALL vs. another
subtype, we will label this cluster as “T-ALL”.

1.5 Meta-signatures of subtypes of children leuke-

mia

We now seek to identify the meta-signatures that
characterize certain subtypes of leukemia across multi-
ple platforms or studies. The first type of analysis is
performed on OVO entities. We pick up the common
genes which are significantly up- or down-expressed
across all the entities which are clustered to represent
certain subtypes. For example, all 52 transcripts ( see
Tab. 1) are dysregulated for the cluster ID. 2 as shown
in Fig. 1, representing the entities of MLL vs. another
subtype. In Fig. 1, the cluster tree is based on ARS fil-
tered by p-value (p <0.01). The label of one entity is
formed as “x: A/B - —y”, where x =1, 2, ..., 5 means
the ID number of datasets in Tab.2; A/B refers to the
entities of group A vs. group B; and y=1,2, ..., 16 de-
notes the resulting ID number of clustering. The result
is interesting that the biological signal is stronger than
the systematic differences between platforms. For ex-
ample, the entities of T-ALL vs. other leukemia sub-
types from different studies are clustered together into
one cluster with ID No. 5, MLL into ID No. 2, E2A-
BPX1 into ID No. 3, BCR_ ABL into ID No. 4, and
FAB-M7 into ID No. 14, etc. On the bottom is the
number of signatures in each entity, which survives the
threshold p <0. 01.

In contrast, we have to find intersections between
the signature of subtypes and discard them when using
the OVA scheme. In this study, we focus on the nine
subtypes of ALL. To this end, we assign the marker-
genes of subtypes as the consistently significant (p <
0.01) genes in OVA entities respected to the given
subtypes of ALL. Then for each set of subtype-marker-
genes, we remove those appearing in the other eight
sets of genes to make sure they are “subtype-specific”.
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Tab.1 52 children OVO MLL specific genes
Probe Symbol Chromo- Up/down Probe Symbol Chromo- Up/down Probe Symbol Cl;;(;r;r;o— Up/down
1389 _at MME 3 - 36536 _ at SCHIP1 3 - 40396 _ at P2RX5 17 +
1914 _at CCNALl 13 36650 _ at CCND2 12 - 40451 _at POLE 12 -
2036 _s_at CD44 11 36777 _at KLRK1 12 + 40493 _at CD44 11 +
2062 _at IGFBP7 4 + 36937 _s_at  PDLIMI 10 - 40518 _at PTPRC 1 +
266 _s _at CD24 6 - 37043 _ at E2R2 1 - 40520 g _at PTPRC 1 +
307 _at ALOX5 10 - 37421 _f_at HLA-F 6 - 40522 _at GLUL 1 +
31472 _s_at  CD44 11 37479 _at CD72 9 + 40729 _s _at NCR3 6 -
32193 _at  PLXNCI 12 37809 _ at HOXA9 7 + 40763 _ at MEIS1 2 +
32207 _at MPP1 X - 37864 _s _at IGHG3 14 - 40797 _ at ADAMI0 15
32607 _ at BASP1 5 + 38194 _s_at IGKC 2 - 40913 _at ATP2B4 1 -
33412 _at GGALl 22 + 38287 _at PSMB9 6 - 41266 _ at ITGA6 2 -
33705 _ at PDE4B 1 - 38291 _at PENK 8 + 41448 _at EVX1 7 +
34168 _at DNTT 10 - 38391 _at CAPG 2 + 41470 _ at PROM1 4 +
34210 _at CD52 1 - 38413 _at DADI 14 + 41710 _at  LOC54103 7 -
34306 _at  MBNLI 3 + 39318 _at TCL1A 14 - 657 _at PCDHGC3 5 +
34785 _at  THRAP2 12 39327 _at D2S448 2 - 769 _s _at ANXA2 15 +
35663 _at  NPTX2 7 39338 _at S100A10 1 + 794 _at PTPN6 12 +
36239 _at  POU2AFI 11 -
Note: Those genes commonly dysregulated in the 13 entities derived from the expression profiles of three pediatric leukemia studies. The
sign“ + ”means the fold change statistics is higher in MLL leukemia samples than in other samples, while the opposite cases are signed as
Cluster dendrogram of ARS (p <0.01)
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Fig.1 95 OVO entities on sub-disease from 5 leukemia studies are clustered into 16 clusters
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2 Results

We catalogue information on 741 pediatric leuke-
mia microarray samples from five published studies for
marker-gene detection, based on Affymetrix technolo-
gy. Each study examines subtypes or drug-response of
the pediatric leukemia cases, and each one is respec-
tively preprocessed using the package compdiagTools.
Among these samples, 728 samples meet the require-
ment that they belong to a subtype consisting of more

than eight samples in that study. One adult leukemia'"’

research is used to check whether the signature derived
from pediatric is validated for adult data preprocessed
for additive scale by the package vsn. Both compdiag-
Tools and vsn include the tools for variance stabiliza-
tion and calibration for microarray data.
2.1 Data and entities for gene detection

The first data set''! reports the assumption that
MLL (n = 20, Myeloid/lymphoid or Mixed Lineage
Leukemia) should be distinguished from both AML (n
=28) and other ALL(n =24), that challenge the tradi-
tional two classes of acute leukemia. The second data-
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set is a study on pediatric ALL'"”'. Here, 327 leukemia
samples fall into nine subtypes of B-precursor ALL and
T-cell lineage ALL. The third study aims at detecting
treatment-specific changes in gene expression upon

four different treatments!"*

. The gene expression pro-
files of bone marrow leukemia cells before treatment
and one day after treatment are examined. Another
dataset chooses 132 ALL tissue samples from the above
[12]

327 samples’ . It consists of all the 10 subtypes of
ALL" . The last study identifies expression signature
for 130 pediatric patients with seven subtypes of
AML"  The more details are given in Tab. 2.

Tab.2 Key characteristics of six independent data

ID Paper Platform

1 Ref. [11] HG-U95a

2 Ref. [12] HG-U9%5av2
3 Ref. [13] HG-U95av2
4 Ref. [3] HG-Ul33a
5 Ref. [14] HG-U133a
6 Ref. [15] HG-U95av2

After raw profiling has been normalized on addi-
tive scale, each gene is assessed for differential expres-
sion with an FC equivalent test using twilight package
in Bioconductor!'”'. The FC test and the t-test yield the
same cluster results and similar multidimensional scal-
ing plots. We calculate all the possible comparisons
from four studies except the study of drug response'"”’,
where only the diagnostically meaningful entities of
pre- vs. post-treatment are considered. There are 95
OVO entities and 31 OVA entities.

We filter the entity without significant (p <0.01)
signature. All 95 OVO and OVA entities have at least
one signature. The corresponding combined matrices X
and P are yielded by picking out the common best-
matched 8 620 transcripts from all studies.

2.2 Signature across studies vs. that across pheno-
types

It is obvious that the RS can cluster the subtypes
of leukemia instead of the source of studies. These RS
map the FC values into the same numeric scale without
losing the orders of expressed genes. Applying ARS,
the biological signatures are even stronger due to filte-
ring the noise. Performing principal coordinate analy-
sis, we can separate the major types of leukemia well.
Using either the OVA or the OVO scheme, AML, T-
and B-cell ALL can be separated clearly in two-dimen-
sional spaces, so do other important subtypes of AML
and B-cell ALL.

Moreover, the multiple subtypes of leukemia can
be clearly separated after adopting ARS and performing

hierarchical clustering on Euclidean distance of OVO
or OVA entities. Fig. 1 demonstrates the ARS result of
OVO entities given a significant threshold of p <0. 01.
Most subtypes of leukemia can be identified as one
cluster, no matter what the study of the entities. Sali-
ent, four subtypes are so distinguishing that all OVO
entities referring to it are clustered together. These are
T-ALL, E2A-PBX1 of ALL, and FAB-M7, PML-RARa
of AML. The signatures in the cluster of BCR _ ABL is
adjacent to that of ALL chromosome abnormalities
using the OVO scheme, and to that of hyperdiploid >
50 adopting the OVA scheme.

We list these marker-genes in Tab. 1 for MLL and
Tab.3 for BCR _ ABL subtype. In Tab. 3, those genes
commonly dysregulate in two entities derived from the
expression profiles of two pediatric leukemia studies.
The sign “ +” means the fold change statistics is higher
in BCR _ ABL leukemia samples than in other samples,

113

while the opposite cases are signed as “ — . Since
rearrangements of the MLL gene occur in both acute
lymphoblastic and acute myeloid leukemias ( ALL,
AML), it is promising to mine the potential MLL
marker-genes from the datasets of both types. We will

discuss these marker-genes in the next section.
Tab.3 23 children OVA BCR _ ABL specific genes

Probe Symbol Chromosome Up/down

1983 _at CCND2 12 +
33362 _at” CDC42EP3 2 +
33924 _at RABG6IP1 11 +
34237 _at” HBSIL 6 +
34644 _ at B2M 15 +
34877 _at KIAA1579 1 +
36035 _ at GPAAL 8 +
36138 _at CAPNSI1 19 +
36660 _ at RABIIA 15 +
37112 _at Cé6orf32 6 +
37347 _at CKSI1B 1 -
37652 _ at CABINI 22 +
37762 _ at EMPI 12 +
38032 _ at SV2A 1 +
38077 _at COL6A3 2 +
38312 _at” OLFMIL2A 9 +
39753 _at ITGAS 12 +
40051 _ at TRAM2 6 +
40196 _ at CTDSPL 3 +
40202 _ at KLF9 +
40504 _at”™ PON2 +
41753 _at ACTN4 19 +
41872 _at”™ DFNAS5 7 +

Note: The probes signed with * are detected in the OVO
method as well.

2.3 Validation on the marker-genes of subtypes of
child leukemia
Some subtypes of ALL are so widely distinct from
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other subtypes that more than 500 genes significantly
differential in the OVA way in both studies''”'. These
subtypes are T-ALL, E2A-PBX1, TEL-AMLI1, hyper-
diploid > 50.

To assess the validation of these subtype marker-
genes we first reuse the dataset of Ross"” with pheno-
type information in details. Six OVA or OVO sets of
ALL-subtype-specific genes are used in the linear
SVM-based supervised learning algorithm for training
classifier. It is done in a randomly selected training set
that consists of three fourths of the total cases (100 ca-
ses) as Ross et al. did in their paper. The result choru-
ses the diagnostic subtypes of pediatric ALL ( for de-
tails see Tab. 4). In Tab. 4, S, represents sensitivity, S,
represents specificity. We adopt the discriminating ( p
<0.05) genes and supervise the learning algorithm de-
veloped from 132 ALL cases. The columns labeled as
“original result” are the results reported by Ross et al.
The last column of “OVO ARS” refers to the ID num-

ber identified for known subtypes as shown in Fig. 1.
“#genesl” represents the number of marker-genes be-
ing inner-type shared. “#genes2” represents the number
of inner-type shared genes without inter-type overlap-
ping. We find that:

@ Three subtypes of ALL, namely T-ALL, E2A-
PBXI1, and TEL-AMLI, have the strongest gene-ex-
pression signature. A prediction accuracy of 99% to
100% can be achieved using both the OVA and the
OVO schemes. While the OVO scheme identifies fewer
genes than OVA does.

@ But for the subtypes having weaker gene-expres-
sion signatures such as BCR _ ABL and hyperdiploid >
50, fewer OVA marker-genes give higher accuracy than
OVO marker-genes do.

@ Interestingly, the 52 OVO marker-genes for MLL
arrangement correctly predict the 20 cases from the
study of Ross et al™ . But in the OVA scheme, no
genes can be identified.

Tab.4 Prediction accuracies in percent of ALL subtypes

Original result OVO ARS OVA ARS
Subtypes S,/ % S,/ % S,/ % S,/ % Cluster ID #genes 1 S,/ % S,/ % #genes 2
T-ALL 100 100 100 100 6 135 100 100 1047 428
E2A-PBX1 100 100 100 100 3 and 8 99 100 100 598 119
TEL-AMLI1 100 100 100 99 7 and 12 74 100 100 634 136
BCR_ ABL 75 100 85 100 4 57 92 99 228 23
MLL 100 100 100 100 2 52 — — 243 0

Hyperdiploid > 50 100 100 78 96 9 85 94 99 587 134

Next, we assess our leukemia specific signature on
an independent dataset'"’. This data is different from
all the above data in that they are from adult cases.
We are able to obtain 100% diagnostic accuracy in dis-
tinguishing B-cell from T-cell for the 128 adult leuke-
mia patients, using the genes identified from pediatric
ALL cases. Moreover, for the adult BCR _ ABL subtype
diagnosed in a molecular biological way, only 11 cases
are mis-classified (S, =93.4%, S, =86.5%) using the
OVO marker-genes (n =57) identified from pediatric
cases in two studies. In contrast, using OVA marker-
genes (n = 23), 20 cases are mis-classified (S, =
89.0%, S, =73.0% ). BCR _ABL is the complex kary-
otype of ALL. Our results reveals a new way for elabo-
rate diagnosis.

3 Discussion

Our study provides a simple, scalable design of
meta-analysis to evaluate, integrate and cluster the
standard test results of multiple datasets. First, RS sub-
stitutes all statistical values with one reference numeri-
cal scale according to their ranks to make all entities
comparable. This presumably changes variance for

some genes but it most notably fits all entities to the
same numerical scale while keeping the level of differ-
ential expression in each entity. Secondly, it is diagnos-
tically helpful to identify the pure subtype-specific
marker-genes, though genes are thought to be coregu-
lated. Rifkin et al. """ showed that the OVA scheme, in
combination with the support vector machine, gave the
most accurate method by a significant margin. Our ex-
periment on ALL data suggests that the OVA scheme is
suitable for subtypes with weak signatures, while the
OVO scheme is more promising for subtypes with
strong signatures. Our results suggest that the tradeoff
between OVA and OVO should be carefully counted in
multiple classification.

Leukemia is among the best-studied cancer based
on microarrays. However, two subtypes t (9; 22)
(BCR _ ABL fusion) and MLL-rearrangement in ALL,
carry an unfavorable prognosis and still contain diag-
nostic errors'”'. By our method, the signatures of these
two subtypes are significantly distinguishing across
platforms and studies. The 23 OVO MLL marker-
genes are detected from three independent studies in-
cluding both AML and ALL cases. Among them, 11 are
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involved in response to biotic stimulus ( hypergeometric
p=10""), namely CD24, DNTT, POU2AFI, KLRKI,
PDLIMI1, CD72, IGHG3, PSMB9, CAPG, and NCR3.
Moreover, CD24 was reported as one of marker-genes

for adult MLL rearrangement'"’ .

Terminal deoxynu-
cleotidyl transferase ( DNTT) is a unique intranuclear
DNA polymerase that catalyzes the template-independ-
ent addition of deoxynucleotides to the 3’-hydroxyl ter-
minus of oligonucleotide primers. These results support
that down-regulated DNTT might be associated with
MLL gene rearrangement'”” . POU2AFI provides struc-
tural and functional specificity in the regulation of im-
munoglobulin transcription, and is proposed as a poten-
tial proto-oncogene for MLL-AF4"*" | Interestingly, PT-
PRC (protein tyrosine phosphatase, receptor type, C)
is involved in T-cell selection'™, and CD44 is the reg-
ulator of T-cell activation'”' . Here we again show that
MLL fusions might also generate a distinct genetic sub-
type of T-lineage ALL™
fied MLL marker-genes reveal new insights into the

. Taken together, the identi-

aberrant transcriptional program MLL leukemias. In ad-
dition, two in the 23 OVA BCR _ ABL marker-genes
are involved in cytokinesis (hypegometric p =0.029),
namely CCND2 and CKS1B. To our knowledge, these
genes are firstly reported as marker-genes for BCR _
ABL and correctly classified this subtype of leukemia
(see Tab. 4). Thus our result reveals a possible new
way for leukemia classification and marker-gene detec-
tion. Further insights into the subtype specific genes
might help to understand the abnormal growth of leu-
kemia.

The salient finding is as follows: Our results sug-
gest that the cell type discriminating genes which are i-
dentified from the pediatric ALL cases can be used to
accurately diagnose adult cases. The analogous result
has been reported in Ref. [ 14] for children and adult
AML cases. It promotes more entities on pediatric and
adult ALL for identification of class discriminating and
related genes with more published data. Our results also
suggest a high risk of chromosome abnormalities in
BCR _ ABL patients group.

Gene expression data can be obtained from arrays
containing cDNA clones or oligonucleotides, or other
gene-specific PCR products. Although grossly similar,
microarray platforms differ in sequence content and
measurement methodology and thus produce qualita-
tively different data. For example, cDNA microarray
performs a two-color competitive hybridization that
gives the ratio of transcript expression in two samples.
In contrast, oligonucleotide chips, such as those provid-

ed by Affymetrix, provide an absolute measurement of
gene expression in one sample. For simplicity, we only
collect recently published microarray data produced by
Affymetrix arrays. However, previous evaluations of
microarray technologies'” found strong correlations (r
=0.8 to 0. 9) among relative gene expression measure-
ments made with different microarray technologies.
Therefore it would be more important to collect leuke-
mia data based on more kinds of platforms, e. g. cDNA
chips, to see whether the biological signal is always
stronger than the systematic differences between multi-
ple platforms.

In summary, our work established the methodology
to classify certain cancers based on meta-analysis of
gene expression profiling, and demonstrated its effec-
tiveness with application on leukemia studies. It is
shown that careful design of meta-analysis can exact
and extend clues into leukemia. We believe that these
genes and clues identified by ARS will helpfully ex-
pand our knowledge of the mechanism of leukemia
progression and treatments.
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