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Complementary system-theoretic modelling approach
for enhancing hydrological forecasting
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Abstract: Hydrologic models generally represent the most dominant processes since they are mere
simplifications of physical reality and thus are subject to many significant uncertainties. As such, a coupling
strategy is proposed. To this end, the coupling of the artificial neural network ( ANN) with the Xin’anjiang
conceptual model with a view to enhance the quality of its flow forecast is presented. The approach uses the
latest observations and residuals in runoff/discharge forecasts from the Xin’anjiang model. The two
complementary models (Xin’anjiang & ANN) are used in such a way that residuals of the Xin’anjiang model are
forecasted by a neural network model so that flow forecasts can be improved as new observations come in. For
the complementary neural network, the input data were presented in a patterned format to conform to the
calibration regime of the Xin’anjiang conceptual model, using differing variants of the neural network scheme.
The results show that there is a substantial improvement in the accuracy of the forecasts when the
complementary model was operated on top of the Xin’anjiang conceptual model as compared with the results of
the Xin’anjiang model alone.
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In view of the fact that conceptual models are
simplifications of physical systems, they are obviously
susceptible to error. In order to extenuate these concep-
tual problems and enhance the chances of better fore-
casts, the idea of complementary modelling comes in
handy and seemingly becomes an attractive alternative
approach. Thus, how efficient in terms of time utiliza-
tion and ease of computation vis-a-vis the overall de-
sire for a better forecast in view of the nature of the is-
sues that constitute the underlying essence of forecas-
ting becomes the subject matter of this research.

The very basis of the above reasoning is derived
by the fact that system-theoretic or data-driven models
are neither based on an explicit representation of dis-
crete physical processes nor a pre-conceived conceptu-
alization of the behaviour of the system. But rather,
they are based on the relationship between selected in-
put and output sets of data. In consequence, they are
limited to learning from the data provided. Inferential-
ly, it is clear that the two models are characterized by
inherent limitations.

Considering these deficiencies or shortcomings, it
is paramount to note that these models should not be

Received 2005-09-15.
Biographies: Martins Y. Otache (1968—), male, graduate, Nigerian,
martinso3@ yahoo. com; Li Zhijia ( corresponding author), male, doc-

tor, professor, lizhija@ vip. sina. com.

operated on a stand-alone basis if the operational envi-
ronment allows. To achieve this end, the artificial neu-
ral network ( ANN), a system-theoretic model was
used to update the Xin’anjiang model forecast after be-
ing calibrated by a faster optimization method in a cou-
pling strategy; in this case, the Shuffle complex evolu-
tionary ( SCE) algorithm is used. The underlying rea-
son for this approach derives from the single fact that
“once a complementary model is established for a con-
ceptual model, the complementary model is independ-
ent of the main model; the complementary model can
incorporate input data that the conceptual model is not

structured to take”'"'.

1 Research Objectives

The central objectives of this study are as follows:
e To establish the effectiveness of the Xin’anjiang
model calibration using an automatic optimization
method.
e Enhancement of the quality of model runoff fore-
casts via coupling or complementary modelling.

2 Description of Watersheds

For this study, the Misai catchment and the Lushi
basin, a sub-basin of the Guxian Reservoir were used.
The Misai catchment (in Zhejiang province, China)
has a total of six precipitation measuring stations iden-
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tified according as Qixi, Majin, Yanxi, Daxibian,
Huanglinkang, and Misai, respectively (see Tab.1).
Tab.1 Sub-basin characteristics

Station ID Name of the Area/km? Area factor
sub-catchment
1 Qixi 207.22 0. 260
2 Majin 162.59 0.204
3 Yanxi 130.71 0. 164
4 Daxibian 131.51 0. 165
5 Huanglinkang 89.26 0.112
6 Misai 75.71 0. 095

As in the preceding section, the Lushi basin is one
of the two basins of the Guxian Reservoir; the second
being the Linkou. The Guxian Reservoir is located in
Luoning county, Henan province, China. In all, the res-
ervoir comprised of the two basins has a network of a
total of fifteen gauging stations. It is paramount to state
here that according to the natural boundary condition
and flow stages in this basin area, the intervening area
or sections between Lushi and Linkou is divided into

six sub-basins (see Tab.2).
Tab.2 Lushi sub-basin characteristics

Station ID F}auglng Sub reach  Area/km’® Area factor
point number
1 8 7 257. 64 0. 120
2 9 8 364.99 0.170
3 10 6 536.75 0.250
4 11 6 279. 11 0. 130
5 12 2 343.52 0. 160
6 13 2 364.99 0. 170

3 The Xin’anjiang Conceptual Model

The Xin’anjiang model was developed in 1973 by
the East China College of Hydraulic Engineering (now
Hohai University), with the underlying aim to forecast
flows to the Xin’anjiang Reservoir'”'. The Xin’anjiang
model has a hierarchical structure with two distinct
conceptual storages (tension water and free water) to
account for soil moisture process regime in conjugal re-
lationship with precipitation, and the consequent runoff
generation and separation constituents.

4 Study Protocol

4.1 Optimization

In realization of the stated objectives of this
study, for the first phase, precursory to the development
of the ANN complementary model, the applicability
and validity of the automatically calibrated parameter
set were investigated using the SCE optimization algo-
rithm in flood event applications.

To this end, all together, 16 flood events (3-hourly

data) selected from the Misai catchment’s historical da-
ta were used. The first ten flood events were used for
calibration while the remaining six were used for vali-
dating the model. For the Lushi basin, a total of 14
flood events (hourly data) were selected from 29 flood
events. As in the case of the Misai, the first ten flood
events were similarly used for calibration while the re-
maining four were used for verification.

For the calibration process proper, all the parame-
ters, except B and EX, were calibrated simultaneously
using the SCE algorithm; parameters B and EX were
fixed in accordance with the findings of Ref. [3]. The
initial state of the catchment ( Misai) for each flood
event was obtained from the daily model application
results™ . In the calibration, for Misai and Lushi basins
respectively, the number of complexes of the SCE al-
gorithm was set to 42 and 40 while other algorithmic
parameters were set to their default values'*'. For the
Lushi basin, in the application, the inflow from the
Linkou basin was routed down along the intervening
flow path using the Muskingum flow routing method so
as to obtain the discharge at the Lushi end.

The entire calibration process was carried out spe-
cifically under the following conditions: The tolerance
is 10 7°; the iteration is 2 x 10°; the random seed num-
ber is —87; the number of optimized parameters is 13;
the number of evolution steps is 8. Considering the fact
that objective functions play crucial roles in model cal-
ibration, a balanced aggregate objective function was
used. To do this, four other objective functions depic-
ting emphasis on specific aspects of the calibration
were coalesced into one, herein the balanced aggregate
objective function.

4.2 Development of the ANN system
4.2.1 Data base selection

The selection of the data base to train a neural
network is of paramount importance; thus in this re-
gard, for the ANN model used, the available data re-
cord was used in two and one variants for the Misai
and Lushi basins, respectively. In the first and second
variants (Misai), i. e., ANN model | and ANN model
II, the whole data was split into two, corresponding to
the calibration and verification modes as applied in the
Xin’anjiang conceptual model. For ANN model [, the
training data consisted of 459 examples while the veri-
fication was made up of 277 exemplars. But in the sec-
ond variant, ANN model I, new input data was select-
ed from the range of the entire data set comprising the
calibration and verification data record as used in the
first variant. In other words, a composite data set was
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composed. It consisted of 577 examples for training
while the training examples in the first variant (459 ex-
amples) were then used to validate the neural network.
In the case of the Lushi basin, the whole data record
was used as a single variant. The first half (1 352 ex-
amples) was for training while the second (650 exam-
ples) was for verification.

To ensure that an influential range of data input
was used, the relationship between the residuals of the
conceptual model and selected time series such as rain-
fall, discharge/runoff observations and previous model
residuals was analyzed using the Pearson moment corre-
lation. The main rationale here is the assumption that the
residual time series is the best reflection of the gap be-
tween the model and the physical process it repre-

sents'"!

. This was done by considering data sets that are

seemed adequate and do have some level of meaningful

influence on the target for the network. This assertion is

glaringly evident as in the correlation matrices for both

the Misai and Lushi catchments(see Tabs.3 and 4).
Tab.3 Correlation matrix for the Misai catchment’s
training data

Variables P, P P, 0., E, E, E,

P, 1 0.602 0.429 0.011 0.057 0.035 -0.029
P 1 0.573  0.063 0.062 0.064 0. 040
P, 1 0.113 0.071  0.065 0. 067
0., 1 -0.005 0.210 0. 177
E, 1 0.546  0.333
E 1 0. 546
E, 1

Note: Matrix vectors are Pearson correlation coefficients.
Tab.4 Correlation matrix for the Lushi catchment’s
training data
Variables P P, 0. 0., E_, E,_ 0, E,
P, 1.000 0.862 0.113 0.095-0.067 —0.047 0.134-0.085

P 1,000 0.133 0.113-0.085 -0.067 0.155-0. 110
Q. 1,000 0.992 0.415 0.392 0.992 0.409
Q. 1.000 0.409 0.415 0.975 0.390
E, 1,000 0.935 0.392 0.935
E, 1,000 0.357 0.813
0, 1.000 0.415
E, 1.000

Note: Matrix vectors are Pearson correlation coefficients.
4.2.2 Network topology/training
The architectures of ANN models are motivated
by models of biological neural networks which can
recognize patterns and learn from their interactions
with the environment. For this particular study there-
fore, a 3-layer feed-forward back-propagation neural
network with bias connections has been used for the
Misai and Lushi catchments, respectively. The feed-
forward ANN is used herein due to its general applica-
bility to a variety of different problems'” .
In view of the fact that the number of nodes in

the input and output layers are dictated by the dimen-
sion of input and output vectors presented to the net-
work for training, or rather the external specifications
of the problem, the number of input nodes is six corre-
sponding to the input variables and output node, one
as for the Misai catchment. But for the Lushi catch-
ment, a multi-objective output approach is adopted;
here, the number of output nodes is equal to two, be-
ing the desired output variables.

After a series of trials, the best network structure
deemed appropriate for the Misai catchment is given
in Fig. 1. The input layer is made up of six nodes
(processing elements) , while the hidden layer consists
of 11 nodes ( processing elements) and lastly, one
node in the output layer. Similarly, for the Lushi
catchment, the same network structure is maintained
except for the increase in the number of nodes in the
hidden layer and output layer. Thus eventually, a
three-layer network consisting of six input nodes, 15
nodes in the hidden layer and two nodes in the output
layer was considered best suitable (see Fig.2).
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Fig.2 ANN structure for the Lushi catchment
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In line with the training process, biases and
weights or connection strengths between processing
units were modified through the training process and
the final values represent the trained ANN. Therefore,
these weights and biases were initialized. Essentially,
since the transformation of the inputs to outputs was
largely dependent on the transfer function, the tan sig-
moid and linear (Purelin in the output nodes) transfer
functions were used. The use of the tan sigmoid was
to enable non-linearity of the network; however, not
for the output nodes since it forces an output to be
scaled by a known maximum. The practice adopted
for calibration and verification is to divide the availa-
ble data into two independent sets, i. e., split sam-
pling. The first data set was used for calibration and
the second for validation or verification in line with
calibration and verification data sets, respectively, as
used in the Xin’anjiang model forecast.

The success of the calibration procedure depends
largely on the power of the optimization method used
to search for the best parameter estimates; this is in
line with the findings of Ref. [5]. Though Matlab rou-
tines were used for this part of the study, the Leven-
berg-Marquardt algorithm which is the default training
function was skipped for the Bayesian regularization
training algorithm because of the computational over-
head of the former.

The accuracy of the results obtained from the
network can be assessed by comparing its responses
with the validation set by using the following perform-
ance criteria, namely, the root mean square error
£ruse- the coefficient of efficiency R°, and the Pear-
son moment correlation coefficient R.

Computationally, the root mean square error is
evaluated accordingly as

12 . T

e = [ (Z 0t —an"t, -a) ) |
where ¢, and a, represent target and network predic-
tion, respectively.

On the other hand, the overall performance of
each network (1i. e., both Misai and Lushi catch-
ments) trained was judged with respect to the valida-
tion data on the basis of the coefficient of efficiency

R? calculated as
2
Z (yp - dp)
.
3 (d, -d)?
P

where y, and d, are the network predictions and target

R =1

values for each pattern p, respectively; d is the mean
target output.
4.2.3 Discharge updating as applied on the
Xin’anjiang model

Here, the Xin’anjiang model is integrated with
the ANN model operating as a post-processing module
that allows for the forecast of the Xin’anjiang model
forecast residual and exploits the measures of actual
discharge up to the current forecast instant. The two
complementary models are used in such a way that re-
siduals of the conceptual model are forecasted by a
neural network model so that runoff/discharge fore-
casts can be improved as new observations come in. In
doing this, the residuals between simulated and ob-
served flows of the Xin’anjiang model are targeted in-
stead of the observed flows. Once the residuals are
predicted, improved flow forecasts can be obtained by
taking the difference between the forecasts of the
Xin’anjiang model and the residual forecasts made by
the ANN model. The adjusted or corrected discharges
are compared with the observed flows Q,., and D,
to establish the extent of fit. In this way, the ANN
model complements the Xin’anjiang model.

5 Results and Discussion

The
Xin’anjiang model using historical flood data from the

automatic  calibration results of the
Misai and Lushi catchments as presented here precur-
sory to the development of the ANN complementary
model show contrasting twists. Analysis of the calibra-
tion results (i. e., optimization) using the 3-hourly
and hourly data respectively from the Misai and Lushi
catchments reveals that the SCE algorithm is capable
of finding a conceptually realistic and valid parameter
set (see Tabs.5 and 6) while fixing the parameters B

and EX in line with the findings of Hapuarachchi'” .

Tab.5 Overall model performance of the flood events for the Misai catchment

L Calibration Verification
Description - -
Observed Simulated Corrected Observed Simulated Corrected
Mean annual flow depth/(mm-d ") 131.37 122.31 131. 37 92. 46 83. 65 92.40
Standard deviation/(mm-d ") 213.51 208. 87 213.51 172.55 144. 39 171. 88
Pearson correlation 0.970 0.998 0.978 0.989
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Tab.6 Overall model performance of the flood events for the Lushi catchment
Descrinti Calibration Verification
escription
P Qo Ouw  ANN Oy Ou Qo Ou  ANN Oy Oun
Mean annual flow rate/

3 . . 257.11 249. 81 256. 15 257.15 102. 74 93.94 65. 05 99. 83
(m”> -s™ " -d7)
Standard deviation/
(m s ! dh 329.37 304. 26 326. 04 329. 63 137.24 108. 15 200. 40 135.96

m- S .

Pearson correlation 0. 968 0.997 0.998 0.942 0.812 0.993

The overall performance of the model (see Tabs.
5 and 6) in these two cases is excellent; especially, the
attainment of high overall efficiency R* in the two
catchments. The peak flow error ( PFE) and lead lag
time error (LLE) (see Tabs. 7 to 9) values of all
flood events in the calibration and validation stages
are acceptable, though the PFE values of the flood
events 10 and 15 (see Tabs. 7 and 8) in the calibra-

tion and verification for the Misai catchment alike are
quite high. This might be attributable to data errors.
But for most of the events, i. e. in the two stages, the
LLE value is zero indicating the coincidence of the
observed and simulated peakflows (occur at the same
time) . The situation in this regard for Lushi is some-
what different as shown in Tabs. 9 and 10.

Tab.7 Calibration results of the Misai catchment

Event Date p/mm E/mm D,./mm D_/mm ERMSE R? PFE LLE
1 19820402T11 to 19820409T05 73.0 16.3 65.0 47.0 39. 47 0.70 4. 06 0
2 19820717T11 to 19820724T05 86. 8 27.6 37.9 41. 4 26. 13 0.84 10. 76 -1
3 19830529T08 to 19830601T23 228.5 6.8 170.7 171.5 99. 74 0.96 6.52 1
4 19830614T08 to 19830619T17  99. 8 15.6 78. 1 68.6 48.24 0.94 7.65 0
5 19831006TO8 to 19831010T17 68. 8 6.8 71.2 49.5 73.43 0. 66 6.27 0
6 19840402T17 to 19840407T23 142.0 6.4 131.6 105.2 71.53 0. 86 2.71 0
7 19840607T08 to 19840612T17  76.6 13.0 43.5 38.5 20. 40 0.90 3.72 0
8 19850505T08 to 19850509T08  93.2 11.6 51.6 58.6 33.53 0.95 6.42 0
9 19850703T08 to 19850709T17  83.8 24.4 64.0 61.2 34,22 0.87 4. 19 -2
10 19860519T05 to 19860527T17 166. 4 43.0 104.3 120. 1 57.57 0.9%4 10. 05 -1
Tab.8 Verification results of the Misai catchment
Event Date p/mm E/mm  Dg/mm D, /mm ERMSE R? PFE LLE
11 19860704T08 to 19860712T08  82.8 26.8 49.7 45.9 20.79 0. 86 5.53 0
12 19870425T08 to 19870430T08 69.5 19.1 40. 8 44. 1 27.34 0.84 4.59 -1
13 19870526T05 to 19870530T17 62.7 19.0 38.7 29.6 24.59 0.75 3.91 0
14 19870531T05 to 19870605T17  65.8 17.8 40.7 40. 8 9.38 0.97 1. 64 0
15 19870909T05 to 19870914T17  65.2 8.9 24. 4 18.9 13.76 0.75 16. 22 1
16 19880621T08 to 19880626T23 145.6 15.1 152.4 136.9 100. 39 0.93 6.55 0
Tab.9 Verification results of the Lushi catchment
Event Date p/mm  E/mm Qg /(m’+sT')  Qg/(m’-sT)  eruse R? PFE LLE
11 19910914T08 to 19910919T08 82.8 26. 8 49.7 14.3 32.60 0.81 3.01 0
12 19920811T08 to 19920818T0O8 69. 5 19. 1 40. 8 29.9 36. 02 0.92 2. 16 -2
13 19930720T08 to 19930727T08 62.7 19.0 38.7 15. 4 23.67 0. 85 3.56 0
14 19960916T08 to 19960924T08 70. 6 22.4 57.3 42.7 81.22 0. 80 2.03 6
Tab. 10 Calibration results of the Lushi catchment
Event Date p/mm  E/mm Qu/(mP-s7h)  Qu/(mPesTh) epyse R? PFE LLE
1 19810904 TO8 to 19810914T20 74.7 16.6 125.5 128.5 33.06 0.99 0.33 -1
2 19820730T15 to 19820804T06 129.3 33.1 93.2 99.1 180. 78 0.87 2.48 5
3 19840920TO8 to 19840925T06 115.7 7.1 125.7 109.2 159.69 0.89 2.85 -2
4 19870604 T08 to 19870606T24  71.3 7.3 29.1 27.8 105.79 0. 84 4.59 4
5 19880809T08 to 19880812T15 36.4 10. 1 24. 8 23.9 41.07 0. 88 1.92 1
6 19880817T08 to 19880821 T08  53.5 10.2 67.6 68.0 84.42 0.91 1.54 -2
7 19890709T08 to 19890715T08 107.6 15.6 57.3 53.7 84. 64 0.92 3.03 3
8 19890827T08 to 19890901TO8 2.0 1.9 18.3 17.3 22.36 0.87 1. 81 0
9 19900429T08 to 19900506 T08 8.9 8.6 24.1 19.8 22. 80 0. 86 2.69 -1
10 19900629T08 to 19900707T08  24.2 30. 1 17.6 17.1 17.82 0.87 4.31 -2
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As shown in Fig. 3, the model shows a reasona-
ble reproduction of the observed discharge for most of
the flood events. However, there are observable dis-
crepancies in some portions of the hydrograph for
some of the flood events. These discrepancies are at-
tributable to prediction errors. For the two case stud-
ies, considering the whole time series, i. e., 16 flood
events for Misai and 14 for the Lushi basin, the pre-
diction error varies between —306.57 and + 300. 76
and the gpyqp being 43. 57 with a corresponding effi-
ciency coefficient of 0. 865 while for Lushi, the pre-
diction error for the whole time series in continuous
simulation varies between - 507.85 and + 623.04
with an average cumulative gy being 65. 85 and ef-

ficiency after Nash-Sutcliffe'

of 0.88. Considering
this, it is clear that the range of the prediction errors is
quite staggering. Mostly affected in this regard is the
peakflow forecast; the variations in the simulated dis-
charges relative to the observed with respect to high
flows are significant. This discrepancy is elucidated
more clearly in the visual plot as shown in Fig. 4.
From Fig. 4, it is apparent that information sharing
among input variables is best at low flows and as the
magnitude of flow increases, the residual also appreci-

ates significantly.
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Though the overall model performance efficiency
is high, there exists a contrasting phenomenon here as
shown in Tabs. 7 to 10. The coefficient of efficiency
R’ value for some flood events is high, denoting excel-
lent prediction but this does not translate into better
ermse Values which measure the residual variance ( For
instance, flood events 3 and 16 in the calibration and
verification stages for the Misai and Lushi catch-
ments) (see Tabs.7 to 10). The only objective expla-
nation for this could be that the coefficient of efficien-
cy of the R’ statistic is oversensitive to extreme values
because of the squared differences in its definition and
correspondingly too, its insensitivity to additive and
proportional differences between predictions and ob-
servations. The implication of this is that it leads to an
increasing influence of large floods on the calibrated
parameter values and invariably, as a result, tend to
enhance the forecast accuracy of the larger floods.

In the second phase of the study, the ANN mod-
el was used. It is glaring from Tabs. 3 and 4 that using
the 3-hourly and hourly flood data, the inter-variable
correlation is almost insignificant but for intra-varia-
bles, a certain degree of correlation is discernible; at
least for a one time step (i.e.3 h). The only conclu-
sion here is that the combination of these input varia-
bles as lagged plays definitive interrelated roles in the
net output predictions of the neural network.

Overall, the performance of the error correction
model (the ANN model) operated on top of the
Xin’anjiang conceptual model is distinctly excellent.
The overall accuracy of the complementary model in
this regard was evaluated by calculating &gy, coeffi-
cient of efficiency R?, and correlation coefficients as
in previous analyses. The gy Statistic whose optimal
value is O, for the Xin’anjiang model operated on a
stand-alone basis both in the calibration and verifica-
tion modes (the Misai catchment) performed below
the complementary (see Tab. 11) in both cases. But
for different variants of the complementary model, the
£ruse and R values are much better relatively. On the
other hand, for the correlation statistic ( optimal value
is 1. 0) which measures the linear correlation between
the observed and the simulated flows, the complemen-
tary model reasonably performed better (see Tab. 5).
The visual effect of this perfect fit can be seen in
Figs. 5 and 6. In Fig. 5, the observed discharge D, is
completely eclipsed by the adjusted discharge D._,,;
this connotes effective correlation. Similarly, Fig. 6
shows a close reproduction of the prediction errors
from the conceptual model; Tab. 5 attests to this phe-
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nomenon. This scenario is also typically reproduced
using the hourly flood data in the Lushi basin ( see
Tab. 12). As discussed in the preceding section for the
Misai catchment, here too, the performance of the
ANN complementary model operating on top of the
Xin’anjiang model outweighs that of the latter on a
stand-alone basis (see Tabs. 6 and 12).

2000

1600

§12J00

&

£ 800

2

A a0
0 " i Pt i
S~ Q v X S X VL oo
EREBBEEEEBERBEERE

2 ] *’:g = 8 82 &
s SE285¢ 5 5&g
3899888 2 2% ¢
g 222223 22 22 9
Date

Fig.5 D, along the Xin’anjiang model D, and D,
500
400
300
200

100

Residual/mm
I
So

-200

-300
< < — N wn o~ < Q — =«
cBECEEEEEZEEEEE
5255387582 :8¢
SE552348E8388888
23335 SEbbs5528¢8
o = = = = = = - SR~ = K= = e =)
S SRS RERERERLE
Date

Fig.6 Error prediction

Tab.11 The performance of different models
for the Misai catchment

Model variant Data set ERMSE R?
. . 1st half (calibration) 50. 42 0. 86
Xin’anjiang model . i
2nd half (verification) 32.71 0.85
ANN model [ + Ist half ( training) 0.029 0.99
Xin’anjiang model 2nd half ( verification) 0. 044 0.93
ANN model II + 1st half ( training) 26. 030 0.72
Xin’anjiang model ~ 2nd half ( verification) 26.020 0.73

Tab.12 The performance of different models
for the Lushi catchment

Model variant Data set ERMSE R
. . 1st half (calibration) 75.24 0.89
Xin’anjiang model .
2nd half ( verification) 43.37 0.85
ANN model + 1st half ( training) 28. 10 0.93

Xin’anjiang model ~ 2nd half ( verification) 29.98 0. 89

6 Conclusion

Results obtained from both the calibration and
verification stages for the two cases, namely Misai and
Lushi, indicate that the SCE algorithm is capable of

finding a conceptually realistic and valid parameter set
in the automatic calibration of the Xin’anjiang model.
In all, given the inherent errors in calibration and vali-
dation data, model inadequacies by many simplifying
assumptions and obtaining a set of global optimum pa-
rameters through any automatic calibration procedures
are a remote possibility or rather a seeming mirage.
This becomes manifest at least considering the SCE
algorithm for instance. The SCE algorithm has some
inexplicable explanations about the steps it follows;
sometimes the objective function evaluations become
useless because it has to undergo reflection, expan-
sion, and contraction steps by a single set of points in
one sub-complex evaluation. In so doing, the values
obtained are discarded in the process. This procedure
is somewhat ambiguous and deserves further explana-
tion and simplification.

The final part of this study involves the use of
the ANN model on top of the Xin’anjiang model to
enhance its prediction. As is typical, the acceptance/
rejection of an ANN model is based on its ability to
generalize its predictions to new data sets not previ-
ously used in the training and thus unfamiliar with the
model. In all, for the two catchments, the performance
of the error prediction model outweighs that of the
Xin’anjiang model ( see Tabs. 5 and 6) operating
alone on the basis of the aforementioned criteria. The
results indicate that the proficiency of the artificial
neural network is able to generalize quite well. Con-
cisely, from the results it can be concluded that the ap-
plication of the complementary models to forecast the
residual errors of conceptual models improves the run-
off or discharge forecasts considerably. Considering
this, as far as the Xin’anjiang model is concerned un-
der this application, the gain allowed by the introduc-
tion of the ANN model, through the addition of dis-
charge updating is remarkable. This is obvious in view
of the differences in the goodness-of-fit criteria be-
tween the Xin’anjiang model forecast and the error
correction ANN model operating on top of it.
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BE: G TARAIERA RS HRIRGEL, AABEFYR IO EIE AnHFERZHF S
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