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Abstract: Both the global exponential stability and the existence of periodic solutions for a class of recurrent

m

neural networks with continuously distributed delays (RNNs) are studied. By employing the inequality aH b}
k=1

< %Z q.b, +%a'(a =0,b, =0,q, >0, with z q, =r —1and r=1), constructing suitable Lyapunov
k=1 k=1

functions and applying the homeomorphism theory, a family of simple and new sufficient conditions are given
ensuring the global exponential stability and the existence of periodic solutions of RNNs. The results extend and
improve the results of earlier publications.
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As is well known, the stability of recurrent neural networks ( RNNs), including cellular neural networks
(CNNs) and Hopfield neural networks (HNNs), plays an important role in their potential applications such as asso-
ciative content-addressable memories, pattern recognition and optimization. Since significant time delays are ubiqui-
tous both in neural processing and in signal transmission, it is necessary to introduce delays into communication
channels which lead to delayed RNNs models. Moreover, because a neural network usually has a spatial nature due
to the presence of an amount of parallel pathways of a variety of axon sizes and lengths, it is desirable to model
them by introducing continuously distributed delays over a certain duration of time such that the distant past has less
influence compared to the recent behavior of the condition. In recent years, the stability of the resulting RNNs mod-
els with continuously distributed delays has been extensively studied and various stability conditions have been ob-
tained for these models of neural networks, see, for example, Refs.[1 —12], and references therein.

To the best of our knowledge, however, there are few results about the stability properties and the existence of
periodic solutions of neural networks with continuously distributed delays, in the literature today. In this paper, we
intend to investigate the stability and the existence of periodic solutions for RNNs with continuously distributed de-
lays. By using inequality techniques and constructing suitable Lyapunov functions, the sufficient conditions to guar-
antee the global exponential stability (GES) and the existence of periodic solutions are given. Our methods are dif-
ferent from what is found in the above mentioned literature.

In this paper, we consider the global exponential stability and periodic solutions of the DCNNs model de-
scribed by delayed intergro-differential equations

x[(1) =-c(Dh(x, (1) + Za,j(t)fj(xj(t)) + Zbij(t)j kij(t _s)gj(xj(s))ds +1,(1) I = 0} (1)
j=1 j=1 —
x; (1) = (1) t<0
where i =1,2, ...,n; a;(1) and b;(7) are the synaptic connection strengths; ¢;(7) >0;f; and g; represent the neuronal

output signal functions; /,(¢) are the exogenous inputs; ¢, are assumed to be bounded and continuous functions on

+oo
( —»,0] ;k,; are non-negative continuous functions on [0, + o )and f k,j(s) ds =1.
0

ij

Assume that system (1) has a continuous solution denoted by x(t, ¢) or simply x(¢) if no confusion should

respectively by ||x| =

‘ ®©

occur, where x(f) =col{x,(¢t)}. For x € R", we define the vector norm |-] and |-
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n L
2
2
(Z=r)
. =supligc) ...
The signum function sgn(p) (p € R) is defined as 1 if p >0;0 if p =0; -1 if p <0.

x|, =max{|yx,|}.For any ¢ =col{¢,} e C: L C(( - ,0],R"), we define a norm in C by

Definition 1 The equilibrium point x* =col{x," } of system (1) is said to be the global exponential stability
if there are constants A >0 and M=1 such that ||x(7) —x" ||, SMqu —x*|.e™™, for Vr=0.
Definition 2! A map H: R"—R" is a homeomorphism of R” onto itself if H is continuous and one-to-one

T

and its inverse map H ' is also continuous .

Lemma 1'”'  Let H: R"—R" be continuous. If H satisfies the following conditions: (1) H(x) is injective on
R";@ ||H(x) | > as |x|—oc; then H is a homeomorphism.

Lemma 2! For a=0,b,=0 (k=1,2, ..., m), the following inequality holds

m 1 m 1
IR
k=1 r =i r

m

where g, >0 (k=1,2, ..., m) is some constant, Z q, =r —1and r=1.
k=1

For system (1), we introduce the following assumptions:
(H1) h, are differentiable, vy,: :Xirelg{hf(x)} >0 and #,(0) =0 (i=1,2,...,n).
(H2) There are constants u; >0 and o; >0 (j =1,2, ..., n) such that
fiw) —f () [ < lu-v],  [g(w) -g(v)[<o;lu-v|
for any u,veR and j=1,2, ..., n.
(H3) There exist constants a6, €R, q, >0 and d;, >0 (i,j=1,2,...,n; k=1,2,...,m+1) such that

n B m ra; n B m Bl 1 n B ) ‘ n B .
ey > ; ay | I; G+ ,2:]4 by | ; qr0; " +Z( ,z:]r | a; [+ /2:1 | by ‘djo'im'"”")
m+l m+l1

where Zakj =1, Zﬁk/‘ =1; qu =r-1;r=1;i,j =1,2,...,n;, ¢, =inf{c,(0)}; \le,j\ =sup\gij(;)
k=1 k=1 k=1 - ! !

s

by | = sup[by(n) | -

(H4) There exists a constant g >0 such that f ek;(s)ds <+ o .
0
1 Existence and Uniqueness of the Equilibrium Point

If x* =col{x," } is an equilibrium point of system (1), from the condition f k,(s)ds =1, then x" satisfies
o
the following algebraic equation:

—c(Dh(x) + Zn‘a,.j(t)ﬁ(xj*) + ibi,.(t)gj(xj*) +1,() =0 i=12,..,n
Define the map H as " -
H(x) =col{H,(x,)} (2)
where H.(x;) =—c,()h,(x;,) + Z a;(nf(x;) + Z b(ng(x;) +I1(1) .

Theorem 1 Assume that (Hl) to (H3) hold, then the map H defined by (2) is an injective.
Proof We prove that if x7x’ then H(x) #H(x") holds for any x, x" € R". The component H,(x;) — H,(x;) of
the vector H(x) — H(x'") is as

Hi(xi) _Hi(x,{) :_Ci(t)(hi(x,‘) _hi(x,i)) + Zaij(t)(f}(xj) _f}(x/j)) + Zblj(t)(gj(xj) _gj(xj’))
By (H1), (H2) and lemma 2, we obtain '

n

Y sen(x, —x))rd[H(x) —H(x)]|x, —x/ | = Y sgn(x, —x/)rd; |x, —x||"™"
i=1 i=1

[ - e (h(x) =h(xD) + X a,(D(f(x) =FD) + 3 b(D(g(x) =g(x)) | <
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n n
2 { gi')’i‘x,' _xi,‘r+21 ‘El[j‘/“(’j‘x_j _-xj’Hxi _xi,‘ril +2{ ‘Eg/‘o-j‘x_; _'xj,H'xi _xi,‘ril} =
J= J=

n m .
3 BTSN S PRIPEIT) ; P ST
TYilx =X 2 lay w0 Gy =) L g (x = x3)
= &

n m

Bij
2 ‘ _,'B’“l'j(xj _x]/') ‘H ‘o'j;i‘l(xi _le') ‘qk} =

=1
n

~

m

r ,{—cyl‘x —x ‘ +z ‘%\*[ZW fm‘x - ’_‘r +Iujram+1,j‘xj _x.;‘r] +

=

DY R P

{ rdcyy; |x, - x| +4d, [Z \a,j\quM,"k +z \bU\quU T ] lx, — x| |

n

~
=

i=

I\

i [
=1
n

g™ + 3 byl ] g g1} =

-

n m ﬂ([ n m ﬂ([
Z {—rd,-c,-%-\xi A DAY TS WA D WA EFRE [
- j=1 Tok=1 j=1 k=1

Bl

e . — o
[ Z ‘a”‘ 4ram+|,, + 2 ‘bﬁ‘dja.i'ﬁmn,z] ‘xi _x; ‘r} - _ zldi{rg)/i - [ z{ ‘aii‘kzthk’uf a  +
J i= Jj= =

=1
- k 1 “ ra I
50500 ] L[5 oo+ 3 ] -

From (H3) we derive

n

> sen(x, —x))rd, [ H(x) - H(x) | %, -«

i=1

r—1 < 0

which implies that there exists at least one index i such that H,(x;) — H,(x;) #0. It directly follows that H(x) #
H(x") . Hence, the map H is an injective.

Theorem 2  Assume that (H1) to (H3) hold, then the map H defined by (2) is a homeomorphism on R".
|>o0. Let H* (x) =

Proof By lemma 1 and theorem 1, we only need to prove that |H(x) |—o as |x
col{H,; (x,) }, where

H (x) =-c(0)(h(x) —h(0)) + Z,a,»j(t)(f,-(xj) - £(0)) + Zbi,-(l)(g,(xj) - 8;(0))

To prove that |H(x) [>e as ||x[|—e, it suffices to show that ||[H* (x) |—w as ||x[—c . Similar to the

proof of theorem 1, we have

n n n n

Y rdsanCe) Hy (6) x| < Y d e+ X lay iy a7+ X By lo | 17 =
i=1 i=1 j=1 j=1
m

n n m n
o agj _ Bkj
Saf-amial s § la e Tt o 3 0 oo [T 10000 <
i= j= = i= =
" A I rakj .
rzdi{_g.iyi‘xi‘r_l_; ‘aij‘?[;qkﬂ’jqk‘xi‘r +Iu/jmm+l.j‘xj‘r:| +
- | m By n n B m ragg
bl-j 7[}( Bm+l./"xj "] } = — Zd,{rg’y, - [ /2:]’ ‘al-j‘];qkujqk +

" Bk T ;
qu] 4 [Z\a R Nt IR
“ i=1

1M=’1’M=1

where

n m m Bii
y=minfrey, - [ 3o Faw + 3 15T acr | - f [ 3 lalds 3 pldom ]} >0

Thus, we obtain

n n

yd,-\x,\’SyZ_ld,-\x,-\’ < | 3 rdsgn(x)H (x) x| ] < Zrd [H () | 7 < H (o L [x] ”Zrd,»

i=1 i=1 i=1

n n
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That is yd| x||, < ( Y rd,.) |H*(x) |, » where d =min{d,}.
Hence, it follows that |[H* (x) |, =¥ ‘1/( Y, rd, ) | x|l. » which directly implies that |H"*(x)[|-> as

i=

[ x| in view of the equivalence of the norms [ -1, and ||+ ||, thus H is a homeomorphism on R".

®©

Theorem 3 If the conditions (H1) to (H3) hold, then the system (1) has a unique equilibrium point x .

s

Proof Theorem 2 ensures that H is a homeomorphism. Hence there is a unique equilibrium point x = x
such that H(x") =0.

2 Global Exponential Stability of the Equilibrium Point

Let x* =col{x;" } be the equilibrium point of system (1).Making a transformation for system (1): y,(7) =

x,(1) =x/(i=1,2,...,n), we have

Vi) == (DKUD) + X a(DF((0) + Y b0 [ k(1 =9G (s 120 3
v =d(1) 1<0

where K,(y,) =h,(x) —h,(x"), F,(3) =£0x) ~£(5"), G(3,) =8,(x) —&,(x"), D,(0) =i (1) =, (1, =12, ...m).

Clearly, the equilibrium point x* of system (1) is global exponential stable if and only if the equilibrium
point O of system (3) is global exponential stable. Thus in the following, we only consider the GES of the equilib-
rium point O for system (3).

Theorem 4 If the conditions (H1) to (H4) hold, then system (3) has a unique equilibrium point 0 which
is GES in the sense that every solution y(#) of system(3) satisfies

Iyl <Me™| o], (4)

non 7 Butli e 1
where M = {lg[ Zdi + ; ; d’bifrzf(fo e™k,(s)ds —1 ) ] } =1,y(t) =col{y,(?)} and @ =
col{d,}.

Proof The existence and uniqueness of an equilibrium point O is guaranteed by theorem 3, so we only need

to prove that inequality (4) holds. From the conditions f k;(s)ds =1and f e ’k;(s)ds < +o , we can find
0 0

a critical value u* >0, such that f e’k;(s)ds <+ o can be held for arbitrary u e (0, " ). Define the function
0
G(u) as

n m ragj m Bij
Gw =rcy, ~w - ¥ [\a,.j\;qku_,vf + \Etj\;qko'jﬁ] _
j= = =
1

n +0oo
jz [ ‘aji ‘d.i/-"imm”'i + ‘Eji ‘d./'o-i’ﬁm%iJ; kii(s) er’”ds]
i j=1

From (H3), G(0) >0 and G(u) — — o as u—u " . Thus there exists a w e (0, u ") such that G(u) =0, i.e.,
B n ~ m rayg ~ m By 1 n ~ . v ~ ‘ +o0 .
ey —w =X [lal X am + 151 X a0 | = [ laldu = + b [do [ k9erds] =0
Jj=1 k=1 k=1 i j=I1
Now we consider the following Lyapunov function:
V() = Zd‘ [ ‘y,(t) ‘reffu + 2 ‘Bij ‘a_jfﬂmﬂ,jJ'O kij(s) (J ‘yj(’T) ‘rerﬁ(ﬁr)dT)ds] (5)
i=1 j=1 -5

Calculating the upper right derivation of V along system (3) and using lemma 2, we obtain

D+V(t) ’ r— + nut r — ot . E e+l
4 S Z}di{r\yim\ Dy [+ Ly (o) |7 rpe™ + 3 [ by o
1 J=

n

i=1

[0 [ T ds = [ k() |y =) Ferds | | < Yo e [ = enlyn |+

21 Lay 1 [y (0 I Ly, (n) [+ 21 by lo | y.(1) ‘Hf k(1 =$) [y,(s) ‘ds] + [y, (1) |7 pe™ +
j= j= —
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~ =
—

B, 10,y [ k(90 ds = 3 (b, o[ k() [y, ) s | | =
Jj=1 0
ut ;. r c - 41, - b k
rdi{epL [ _(gi')’i -®) \yi(f) ‘ + Zl ‘a,’;‘ ‘,u'j m+"y_,'(t) ‘H ‘,U/_,jk[yi(t) ‘q +
i= =
" [
o +
I |
i B |, r +°°k__(s) em<f+3)ds _ zn: i B, j m k-.(S) _ _ re™ds =
‘b ‘ ‘y,(t)‘ o i ‘b ‘0-] o i ‘yj(t S)‘ =

Jj=1 Jj=1

ut - 1 C — - ra.
e { = (e = Iy |+ -3 a1 [ T as™ 100 |7+, (o ]+
j= —1

‘ ‘O_jﬁnnl.jj » kij(t —S) ‘yj(s) ‘dS

B

m ’ﬂq ; l t r 1 n _ . . .
byl [ v, Lo |+ ([ 1o \kl-ju—s)ds) |+ [ 18y la e 1
= Jj=

j=l

fo k,:].(s)e'{”ds - ; b, \a’_,'ﬂ’”“‘ffo ky(s) |y,(t =) \’ds] } <-e™ ; di{r(gy[ -u) -

n

o & 1By R P e ,
> [l X aw s + 15, Y ao | =3 [la|du™ + b, do [ k(9erds] |
k=1 k=1 i j=1

j=1

So V(1) <V(0). From Eq. (5), we derive
n n B +o0 0
Vo) = 3 d [ 1@ |+ X 5,10, [ k(o) ([ la,(r) e dr s | <
i=1 j=1 -

'<0

n

z [di +d, i ‘El ‘a-j'ﬁmﬂ’ff +oo klj(s) (J»_XO ™) 4 ) ds ]

i=1

n ‘b ‘ B +1,j

> |4 +dy T(f(:wkij(s)e’#sds -1) |l

and V(1) = Y d,|y,(1) "e™ =d,|y,(1) |'e™. Hence
i=1

n ‘B ‘0. B+, j

di\y,«(t) ‘rerfu = g [di +diz Uri f k”(s)e"”ds —1) ] H@”Tr

izl
which leads to [|y() ||, <Me ™| ®]|_, t=0, where
‘b ‘ B+,

- (L [Far 3y oy |

P f(:wkl-,-(s)e””ds—l)] }721

This implies that the equlhbnum point O of system (3) is global exponential stable, i. e. , the equilibrium point x *
of system (1) is global exponential stable. We complete the proof.

Theorem S Suppose that (H1), (H2) and (H4) hold. If there exist constants «,;, 8;; € R, ¢, >0 and d; >0
(i,j=1,2,...,n;k=1,2,...,m+1) such that

reyy > Z qu‘a ““/“L/ + z qu‘b ‘fio' +dL[Z ‘a

m+l m+l

where Eak, =1; EIBM =1; Eqk =r—-Lir=1ij =12 ..m¢ =inflc(D}: [a;] = sup|a,(n) |;

Ty, 41, ’d/.l, + 2 ‘b ‘Vﬁmﬂ zda' ] (6)

|b,; | =sup|b,(r) |- Then system (1) has a unique global exponential stable equilibrium point.

Proof Similar to the proof of theorem 3, system (1) has a unique equilibrium point. In the following, we
prove the equilibrium point is global exponential stable. Similar to the proof of theorem 4, from (6) and (H4),
there exists a constant y >0, such that

_ " " oy " " _ By 1 " _ _ re s
ey, = — [ ]21 ;qk\q, o + ; ;qk\lzj\ﬁld;] _7,-,2:1 [ g iy, + \@i\rﬁmﬂ.,dj(,‘.fo kl_.].(s)e”"ds] =0

Choose the Lyapunov function as

V(1) = Ed:’ [ ‘y;(f) ‘rer,ut + Z ‘BU er+1,j0-jj0wkij(S)(f ‘yi(T) ‘rerlk(s-ﬂ')d’r)ds] (7)
izl j=1 s

The remaining proof is similar to that of theorem 4, so we omit it here.
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Corollary 1 Suppose that (H1), (H2) and (H4) hold. Furthermore, if one of the following conditions
holds,

(A Y =D a, |+ X =D b, [+ [ X la,ldu’ + X (b, ldo | <res
j=1 j=1 T j=1

(A) Y (=D + Y (r=Da, + | Xl ld + 3 1B, "o, | < e,
= = A =

1 S A
(A3) ;[; ‘a/‘f‘d./‘”’i + ; ‘bji‘dja-i] < Ei’)'i;

(Ad) X (r=D)la, ﬁfffﬂ“dl*[ZdwﬁZd/m] < Teis
J=1 i j=1 j=1

(AS) 121 lay I'm + 121 b |0 "'dL[ ;djﬂi + ;d/‘”i] <2¢y;-
Then system (1) has a unique equilibrium point that is GES, independent of the delays.

Proof Leta, =B,=0(k=1,2,...,m;j=1,2,...,n), and a
(H3) turns to (Al).

Let m:l,akj =By =0(k=1,2,...,m) and o
turns to (A2).

Letr=1,m :l,akj =By =0 (k=1,2,...,m) and «
then (6) turns to (A3).

Let m=1,04=B;=1(k=1,2,...,m) and «
turns to (A4).

Letr=2,m=1,ay;=6,=1(k=1,2,...,m) and «,,,, ; =B,,,,;, =0 (j=1,2,...,n) in (6), respectively,
then (6) turns to (AS5). Thus, by theorems 3,4 and 5, system (1) has a unique equilibrium point that is GES, in-

g+ X (=1 [b,
j=1

=f,..1,; =1 in (H3), respectively, then

m+1,j

=B,.1,=1(=1,2,...,n) in (6), respectively, then (6)

m+1,j

=B = 1 (j=1,2,...,n) in (6), respectively,

m+1,j

=B,.1,=0(=1,2,...,n) in (6), respectively, then (6)

m+1,j

dependent of the delays.
Remark When r =1, the condition (Al) is equivalent to Cy - (A*u + B* o) being a nonsingular M-ma-
trix, where C =diag(infc,(1)), A" =(supla, () )., B* =(sup|by(1) ),,,. y=diag{y,} .pu =diagi{u,}, o
t t t
=diag{o;}.
3 Periodic Solutions of Recurrent Neural Networks

In this section, we consider the periodic solution of system (1), in which I,(#): R*—R,i=1,2, ..., n are
continuously periodic functions with period w,i.e., [,(t+w) =1,(1).

Theorem 6 If the conditions (H1) to (H4) hold, then there exists exactly one w-periodic solution of sys-
tem (1) and all other solutions of (1) converge exponentially to it as #— + o .

Proof For V ¢, e C, we denote the solutions of (1) as x(t, ¢p) =col{x,(t, ), ..., x,(t,P)}, x(t,¢) =
col{x,(t,¢), ..., x,(t, ) }, respectively.

Define x,(¢) =x(t+6, ), 0 ( —=,0],t=0, then x,(¢p) € C for YVt=0. Thus we follow from system
(1) that

(x(t,d) —x(t,9))" = —ci(D[h(x(1,d)) —h(x.(1,))] + Zaij(t)[(f,-(x,-(t,@) —f(x (L)) ] +

Y o] k(=918 0u(s.8)) = gxls.0))1ds

for t=0,i=1,2, ..., n. From (H3) and (H4), there exists a small constantﬁ >0, such that

n

o B m rag B m B 1 n B » ~ . o0
ey =w =X [l X ams + 15, Y aon =4 3 | g ldu ™ + b, |da [ k(9eds| =0
k=1 k=1 i j=1

j=
We consider the following Lyapunov function

V() = Zd[ x(1.d) —x(r) |7 +Z 1B, o o) ([ xrg) —xrg e dr ) ds |

By a minor modification of the proof of theorem 4, we can easily get
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Ix(e, ¢) —x(t,) . < Me™ | —yl, =0

where M =1 is a constant. One can easily follow the formula above that

lx () —x ([, <Me™ g —yl, 0 (=20 (8)
because y satisfies the condition f ek, (s)ds <+ o , we can choose a positive integer m such that
0
Me™ "™ < ;— 0 e (-o,0] (9

Now we define a Poincdre mapping T: C—C by T¢ =x,(¢p), then we can derive from (8) and (9) that
., 1
"¢ =1yl < 5l —ul.

This implies that 7" is a contraction mapping, hence there exists a unique fixed point ¢ * e C such that "¢ " =
¢ " . Note that
T"(Té") =T(T"¢") =Td"

This shows that T¢p* e C is also a fixed point of 77,50 Tp" =¢p ", i.e.,x,(d") = .

Let x(t,¢") be the solution of (1), obviously, x(t + w, ¢ ") is also a solution of (1) and x,,,(¢p") =
x,(x, (")) =x,(¢") for t=0; therefore, x(t+w, ") =x(1,¢") for 1=0.

This shows that x(7, ¢ ") is exactly one w-periodic solution of (1), and it is easy to see that all other solu-
tions of (1) converge exponentially to it as r— + o .

Theorem 7 Suppose that all conditions of theorem 5 hold. Then there exists one w-periodic solution of sys-
tem (1) and all other solutions of (1) converge exponentially to it as #— + o .

Proof By a minor modification of the proof of theorem 6, we can also prove theorem 7, which is omitted.
This completes the proof.

Applying theorems 6 and 7, we can prove the following corollary.

Corollary 2 Suppose that (H1), (H2) and (H4) hold, furthermore, if one of the following conditions
holds,

(BI) Y (r=1) g+ > (r-1 \B,,\+L[ 2 layldu’ + % b, ldol | < ey,
j=1 j=1 j j=1

(B2) Y (r=Du, + Y (r-ao, + %[ Z la,
j=1 j=

1 n B n _
B3 | X laldu + X 1B, 1do

"du

dja-,.] <rey;s
< Cyis

(B4 ¥ (r-1)]a,

i+ X =D b,
j=1

x_ 1 - Z
o+ | 2, Ay + ;d,v,-] <rey;s
(BS) 21 a1 + Z 5, "o, +dL[ Z‘dj'ui + Zdja,.] <2cy; -

j= j= it = j=

Then system (1) exists one w-periodic solution and all other solutions of (1) converge exponentially to it as

— + oo,
4 Conclusion

Some sufficient conditions are given ensuring the global exponential stability and the periodic solutions of
RNNs by using a new analysis technique and constructing suitable Lyapunov functions. The conditions possess
highly important significance in some application fields, for instance, they can be applied to design globally expo-
nentially stable RNNs and periodic oscillatory RNNs and easily checked in practice by simple algebraic methods.
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