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Note on a diffusive ratio-dependent predator-prey model
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Abstract: Subject to the homogeneous Neumann boundary condition, a ratio-dependent predator-prey reaction

diffusion model is discussed. An improved result for the model is derived, that is, the unique positive constant

steady state is the global stability. This is done using the comparison principle and establishing iteration schemes

involving positive solutions supremum and infimum. The result indicates that the two species will ultimately

distribute homogeneously in space. In fact, the comparison argument and iteration technique to be used in this

paper can be applied to some other models. This method deals with the not-existence of a non-constant positive

steady state for some reaction diffusion systems, which is rather simple but sufficiently effective.
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1 Background

Let 2C R" be a bounded domain with smooth
boundary (2, and u(x, t) and v(x, t) represent the den-
sities of prey and predator at spatial x e {2 and time ?,
respectively. In Ref. [ 1], subject to the homogeneous
Neumann boundary condition, the authors studied the
following diffusive ratio-dependent predator-prey mod-
el:

u, —d,Au=u(l —u) —%
. (h
2 —dzAv=rv( —k)
u +my

with the corresponding initial u(x, 0) =u,(x) =0( #
0), v(x,0) =v,(x) =0( #£0) are continuous functions.
All the parameters appearing in model (1) are assumed
to be positive constants. The constants d, and d, are the
diffusion rates corresponding to u and v. Prey is as-
sumed to grow logistically in absence of predator. Here
the homogeneous Neumann boundary condition means
that model (1) is self-contained and has no population
flux across the boundary af2. For the more detailed bio-
logical background of the model, readers can refer to
Refs. [1 —3] and the references therein.

Since the variables u# and v represent the densities
of prey and predator, they are required to be non-nega-
tive. It is clear that model (1) has a unique global solu-
tion (u, v). In addition, in virtue of u, %0, , v, #0, the
solution is positive;i.e., u(x, 1) >0, v(x, ) >0 on 2
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for all  >0. We note that model (1) has at most one
positive constant steady state (u, v) given by
u=1 200 Lok i 1 b1 k) <m
m mk

Pang et al.'"" gave some qualitative descriptions
of solutions to (1) and its corresponding steady state
problem. In particular, they discussed the non-existence
of a non-constant positive steady state, that is, theorem
4.1 of Ref. [1] roughly states that when d, is not too
small and d, is large enough, then (1) has no non-con-
stant positive steady state. In Ref. [4], the authors con-
structed a Liapunov function and claimed that (u, v)
was globally asymptotically stable when k£ <1 and b(1
+k —k*) <m (theorem 2. 1 in Ref. [4]). Further-
more, for the steady state problem of (1), in addition to
the condition k <1 and b < m, under some assumptions,
they obtained some improved non-existence results for

<

non-constant positive classical solutions (theorem 4. 1
and theorem 4. 2 in Ref. [4]). Based on the implicit
function theorem, their proofs are complicated.

In this paper, by the comparison argument and the
iteration technique, we will prove that if k<1 and b <
m, then (u, v) is globally asymptotically stable ( see
theorem 1 for details). The result gives an improved
non-existence result for the non-constant positive
steady state of Ref. [1] and covers all the results of
Ref. [4].

In the following, we discuss the global stability of
(u,v) for (1).In fact, the comparison argument and it-
eration technique to be used in this paper can be ap-
plied to some other models, and for the details, please
see the remarks in section 2.

2 Global Stability of (u,v)

This section is devoted to the global stability of
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(u,v) for (1). We first state a result which has been
verified in Ref. [1].
Proposition 1 Assume that k <1 and b < m. For
any solution (u, v) of (1), there holds
lim sup max u(, 1 <mn,

t—
lim sup max v( +, 1) <a
e 0 " )
lim sup n{]}in u(+, 1) =¢,
lim sup r%in u( -, 1) =a,
t—x
where 1, =1,¢, =1 -b/m and a =(1 —k)/(mk).
Proposition 2 Assume that k <1 and b <m. Let
a be the constant defined in (2). The problem

_1- abz
r= y +amgz
aby
z=1-—20 (3)
Z +amy

b
1 -—<y<sz<l
myZ

has a unique solution y =z = u.

Proof It is obvious that (y, z) =(u, u) is a solu-
tion of (3), and if y =z then the unique solution of (3)
is (u, u).

Let (y, z) be a solution of (3). We prove y=z by
contradiction. If y#z, a direct computation gives

y+z=1—-ab-am
As a result, it is necessary that ab + am <1. By (3), we
have
(1 —am)y* +a(ab +am -1)(m -b) +
[am(2 —am —ab) —1 —ab]y =0
(1 —am)z* +a(ab +a m -1)(m-b) +
[am(2 —am —ab) -1 —ab]z=0
It is obvious that there at most exists a unique solution
(y, z) satisfying (3) and (4). Moreover, with z =y
contradicting z#y, the proof is complete.

Now, we can obtain the global stability of (u, v)
as the following theorem. This result indicates that the
two species of prey and predator will ultimately distrib-
ute homogeneously in space.

Theorem 1 Let k <1 and b <m, then (u, v) is
globally asymptotically stable for (1). In particular, this
implies that (1) has no non-constant positive steady
state if k <1 and b <m hold.

Proof Let (u,v) be any solution of (1). In vir-
tue of (2), for any & >0 small, there exists 7 >0 such
that u(x, 1) <n, +& and v(x, 1) =aé, — & for all x e
and r=T. By the first equation of (1), we have that if
(x, 1) e (2 x [T, «)), then under the homogeneous
Neumann boundary condition

(4)

bu(ag, - &)

n, +e+m(aé, —¢)
The standard comparison argument shows that

u, —dAusu(l —u) -

11—

lim sup max u(+, 1 <sn,(e)

where 1,(g) =1 —ab¢,/(n, +amé,) +o(g). In view
of the arbitrariness of £, we have

lim sup max u( -, t) <m,
t—o 0

where n, =1 —abé,/(n, + amé,). Then, for any ¢ >0
small, there exists 7 >0 such that u(x, t) <%, + & for
all xeN and t=T. Hence if (x,1) e (2 x[T, ®)), v
solves

v, —dzAvsrv(nzing —k)

N, +&+my

with the homogeneous Neumann boundary condition.
Note that k <1, let z(¢#) be a solution of the ordinary
different equation (ODE) problem

+
Z’(t)zrz(iﬁq2 ‘ —k)
N, +&+mzg

(1-k)(n, +&) —mkz
r
< N, tet+mg
D) =maxv(+,T) >0

where t=T. Then

lim 2(r) = G =R (M +&)

t—o mk
Thanks to a comparison argument and the arbitrariness
of g, we yield that

lirrtlﬁfup max v(, 1) <am, (5
Hence, due to (2) and (5), for any ¢ >0 small, there
exists 7 >0 such that u(x, t) <&, —¢ and v(x, t) =an,
+eforall xeQand t=T.If (x,1) e (2x[T, »)), it
then follows that u satisfies

bu(am, +¢&)
& —e+m(an, +¢&)
with the homogeneous Neumann boundary condition.
Again, by the comparison argument and the arbitrari-
ness of g, we have
lir’riinf I%in u(+, 1) =¢,

u, —d,Au=u(l —u) -

where &, =1 —abn,/ (&, + amn,). As a result, applying
the equation for v(x, t), as above, we have
lim inf rr?l)in v(-, 1) =aé,
It is clear to see that &, <&, <m, <7,. Repeating the
above arguments, inductively, for i =1, there exists an
increasing sequence {¢&;} and a decreasing sequence
{n;} satisfying
abm; ., ab¢;
§i+l:1_ > Miv1 =1 —
& +amy, m +a mg;
b

1 o =£ <& <€ <€ <<y <y <<y =1
Hence, we have lim(¢,, n,) = (&, n). Moreover, (&,
n) satisfies (3) with (y, z) = (&, ). From proposition
2, we have & =7 = u. This shows that u—u uniformly
on ) as t— o . Owing to the comparison principle, v
—v uniformly on (2 as +—oo , which ends the proof.
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Remark 1 Our comparison argument and itera-
tion technique can also be applied in some more mod-
els, for example, the classical Lotka-Volterra competi-
tion model with diffusion

u,—d,Au=u(a, —byu—-c,v) 6

v, —d,Av=v(a, - b,u - sz)} (6)
and the diffusive predator-prey model with Holling- II
functional response

ut—dlAu:u(a—u— by )

m+u

(7)

v,—dzAv=v(d—v— < )
m+u

By the argument above, we can obtain the same result
for (6) as in theorem 3.1 of Ref. [5] and for (7) as
in theorem 1 of Ref. [6]. However, their methods are
invalid for model (1). From the proof of theorem 1, it
is not hard to see that for all the models mentioned a-
bove, our method is possible to be applied when one
specie is assumed to grow logistically in absence of
the other in population dynamics.

Remark 2 We would like to point out, it is
clear that the method can also be applied to the ODE
model. For example, the following ODE predator-prey
model'”!

,  a,uy
u,=riu—-bu aan
u
1
2 (8)
a,v
V, =1,V -
Yk, tu

By giving a positive invariant attracting set and con-
structing a suitable Liapunov function, the authors
show that the interior equilibrium (u”*,v") is globally
asymptotically stable if
2a,L<rk,, 4(r, +b k) <a,
k, <2k,, a,r,k, <a,rk,

where 4a,b,L = a,r,(r, +4) + (r, +1)°(r, + b,k,)
(see Ref. [7], theorem 4, proposition 5, theorem 6).

By virtue of our method, by a series of computations,
we can obtain an improved result, that is, the interior
equilibrium (u*,v") of (8) is globally asymptotical-
ly stable if a,r,k, <a,r k, and 2a,M < r k,, where
dasb, M= (2b k4, =bik) + [ (r =Bk +

2
1

4 7

— k, - k

az(azrl 1 an 2)]
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