Journal of Southeast University (English Edition)

Vol. 22, No. 3, pp. 311 - 314

Sept. 2006 ISSN 1003—7985

Supporting web services reuse
by semantic service component and composition pattern

Chu Wang

Qian Depei

(Department of Computer Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China)

Abstract: Due to the fact that the existing web service description methods cannot address the issue of service

reuse of various levels of granularity, the concept of service component is introduced, which packages together

web services and choreography, and their operations and properties are presented in a consistent and uniform

manner. Service components are published externally as normal web services and can thus be employed by web-

based applications. In order to improve reusability and testability of service components, the concept of

composition pattern is also proposed, which presents the relationships among service components. The

relationships and relationship compositions have a rigorous semantic, so that composite components can be

validated at the configuration stage. The composition patterns support to integrate service components of various

levels of granularity. Experience indicates that the application assembly can effectively be conducted by

understanding, selecting, and reusing components easily.

Key words: semantic web; semantic service component; service reuse; composition pattern

One of the challenges to reusing services in an ef-
fective way is the specification of web services. Current
standard technologies for web services (e. g. WSDL)
provide only syntactic-level descriptions of their func-
tionalities, without any formal definition of what the
syntactic definitions mean. The lack of machine-reada-
ble semantics necessitates human intervention for serv-
ice discovery and composition. Semantic web services
relax this restriction by augmenting web services with
rich formal descriptions of their capabilities, thus facili-
tating automated composition, discovery, dynamic bind-
ing, and invocation of services'".

Another challenge to reusing web services is the
granularity. The service reuse should support the inte-
gration of services at various levels of granularity. The
services should be understood at a coarse granularity.
That is, instead of modeling actions and interactions at
a detailed level, it would be better to capture the high-
level services. Coarse granularity reduces dependencies
among the participants and reduces communications to
a few messages of greater significance”™ .

This paper introduces the concept of service com-
ponent and composition pattern to support services re-
use at various levels of granularity. Service component
encapsulates operation, behavior, constituent services,

Received 2006-04-12.

Foundation item: The National Basic Research Program of China (973
Program) (No. 1999032710).

Biographies: Chu Wang (1966—), male, graduate; Qian Depei (corre-
sponding author) , male, professor, depeiq@ 263. net.

and choreography. Because the choreography among
the services is a critical part of the application and may
vary over time, it is important that the choreography is
explicitly represented and available to both the provider
and the consumer of the published services. Pattern is a
way of reusing abstract knowledge about a recurrent
problem in a particular context and its solution. When
the problem is complex, it can be divided into a few
simpler problems, each one being resolved in an inde-
pendent pattern. The simplicity of a pattern and its
“small size” make it easy to understand, to integrate,
and to reuse. A domain specific pattern is a natural way
for the formulation of accumulated development ex-
pertise in system development'*™'. In this paper, the
services composition pattern is represented as service
components and relationships among them. The compo-
sition pattern supports the carrying out of “what-if”
analyses in an efficient manner.

1 Service Reuse and Problems

Karhunen presented the service-oriented software
engineering (SOSE) component framework in Ref.
[6], which offers service and business components as
design models for the system development. The SOSE
component model has three levels of granularities: sys-
tem, business service, and component level. The system
level component is a set of services, which all publish
services for the customers. The business service compo-
nent has a four-layer architecture where components
depend on another component forming components de-

312 Chu Wang, and Qian Depei

pendency. The simplicity of the model enhances its re-
usability.

Yang et al. "’ presented an approach to the devel-
opment of composite web services based on the model
driven architecture (MDA). The UML class diagram
and the activity diagram are used to model structure
and behavior of the platform independent model (PIM
), respectively, and then the PIMs are converted to
specific web services specification'”.

From a software engineering perspective, the real
challenge is how to support the service composition,
consistency checking, reuse, and maintainability. The
service provider imposes a particular decomposition of
the business process, which makes it inappropriate for
the discovery tool to perform automated service com-
position. Recomposing a process without knowing the
intended side effects of the original composition runs
the risk of composing services with unintended side
effects'™ .

Services composition requires proper abstractions
that capture the semantic of the composition pattern
and the constraints on how the services may participate
in compositions and help reject unsuitable compositions
so that only acceptable systems are built. A key aspect
in the design of a composed service is to maintain
global coherence. This calls for a means with which to
pool knowledge and evidence, determine shared goals,
determine common tasks across services, and avoid un-
necessary conflicts'”’. Most service composition ap-
proaches attempt to address service composition by
composing single web services from scratch, ignoring
the reuse of existing compositions. From a developer’s
perspective, it is interesting to explore the reuse of
composite services. The higher level of service reus-
ability will lead to a more efficient and more structured
composition process which will accelerate application
development '”'.

2 Semantic Service Component and Compo-
sition Pattern

The service component is a packaging mechanism
combining published web services, which includes sev-
en parts: category, global-goals, operations, constituent
services, behavior, choreography, and constraints.

Service component: : =
{
[Category: ID, name, domain, {synonyms}, { Abbreviations }]
[Global-goal: Service component] //Global-goal is represen-
ted as a service component structure
[Operations: {(Syntactic properties, semantic properties, opera-

tional properties, registered service) }]

[Behavior: Finite state transition system]
[Constituent services: {Service components} |

[Choreography: { Operations and mode (parallel ‘ sequential

<)M

[Constraints: // Knowledge to enforce integrity { constraints }]

).
The category contains five attributes: ID, name,

domain, synonyms, and abbreviations. ID is unique
service component identifier that takes the form of a
universally unique ID (UUID). Domain denotes the ar-
ea of interest of the component. The synonyms attribute
contains a set of alternative characteristics of name.
The abbreviations attribute is a set of short forms of
name. Service components are invoked through their
operations. The global-goals give the reasons for the
existence of the service component.

The operations are described in four parts: syntac-
tic, semantic, operational, and registered service.

Syntactic properties
ly described by the following attributes: Op-ID, name,

Operations are syntactical-

mode, input, and output. Op-ID is unique operation i-
dentifier that takes the form of a universally unique ID
(UUID) . The second attribute gives the name assigned
to the current operation. The operation’s mode has one
of the following values in, out, in/out, and out/in.
Semantic properties
tions is crucial to enabling services on the semantic

The semantics of opera-

web. Semantic properties defined for operations include
pre-condition and post-condition.

Operational properties We propose to provide
a service component with a test-suite as operational
properties that can be used to ensure that the service
behavior is preserved through evolution. Every test case
of a test-suite is described as ¢ = {initial state, input,
output, final state}. If it is shown or required that a
service component satisfies business goals (@) by tes-
ting based on test-suite (S), we write the case as SE=
@, otherwise S 2. These test suites are published as
service component facets, so that users can download
and periodically run them against the service.

Registered service
plemented web service. Let us distinguish between ab-

Registered service is an im-

stract operation and concrete operation. An abstract op-
eration only specifies the business goals without refer-
ring to any specific service implementation. A concrete
operation specifies the goals and web locations of the
service. An abstract operation allows users to share web
component without reference to any specific service
implementation. For a concrete web component, the in-
vocation of operation is translated into the invocation
of registered service. Behavior and choreography repre-

Supporting web services reuse by semantic service component and composition pattern 313

sent the semantic at the service component level. The
choreography determines the interoperability of the
constituent services. Behavior describes another kind of
semantic information of operations by using formalisms
such as finite state transition system. Behavior is used
to determine valid invocation orders of operations.

When services are developed for reuse, services
provider decomposes business goals into sub-goals, and
ends up with goals that are satisfied by services to be
published or ones that can be constructed easily. This
“divide-and-conquer” procedure results in three kinds
of relationships among service components: “Goals-As-
signment ” relationships (named +-relationships),
“Play-Role-In" relationships (named g-relationships),
and “Satisfied-By” relationships (named A-relation-
ship) """’ Service components are intended to be reus-
able, if there exist errors or defects in the components,
they will be “reused” to applications. Hence, service
components and composition should be testable. In or-
der to enhance the testability of service components,
the mentioned relationships and relationship composi-
tions should have rigorous semantics.

Definition 1 (y-relationship) Let C, and C, be
service components, ¢, and @, be goals of C, and C,,
respectively; S| and S, be test suite of C, and C,, re-
spectively. y: C,—C, means that @, is the global-goal
of @,,and S, =P, =S, =,, S, ZD,=S, P, .

Definition 2 (B-relationship) Let C, and C, be
service components, ¢, and @, be goals of C, and C,,
respectively; S| and S, be test suites of C, and C,, re-
spectively. 8: C;, —C, means that the constituent serv-
ices of C, contains C,, @, is the global-goal of @,, and
S, E®,=S8, =, S, D, =S, o,

Definition 3 (A-relationship) Let C, and C, be
service components, @, and @, be goals of C, and C,,
respectively; S, and S, be test suites of C, and C,, re-
spectively. A: C,—C, means that @, is the same as @,,
and S, =&,=S5, =d,.

Definition 4 (Service composition pattern) Let
C,, {C, | ieN}, and C be service components, C, be an
abstract component, and there exist {y,: C,—C, | i e N}
and {B,: C,—C | i e N}. If there exists A: C,—C, then
C,y, C, {C.}, {v:}. {B:}, and A constitute a service com-
position pattern, written as C,—, C{C, | i e N}.

By composition pattern, business goals can be
mapped into the sub-goals, constituent service compo-
nents, and choreography. Particularly, service composi-
tion patterns describe valid services composition by
which developers can retrieve web services and assem-
bly applications efficiently. The service composition

pattern also offers an adequate means to deal with the
granularity variation problem.

Proposition 1 Let C,, C,, and C; be service
components. (D If there exist y,: C,—C,, y,: C,—C;,
then y =y, oy,: C,—C, is well-defined. (2) If there ex-
ist A;: C,—C,, A,: C,—Cy;then A = A, oA C,—C,; is
well-defined. 3 If there exist y: C,—C,, B: C,—C;,
and for every functional goal of C,, there exists a cor-
responding choreography in C,, then A =8 oy: C,—C,;
is well-defined; otherwise, y =8 oy: C,—C,; is well-de-
fined.

According to definition 1, definition 2, and defini-
tion 3, proposition 1 obviously holds. Proposition 1
means that if the relationships between service compo-
nents are well-defined when the design decisions are
made and the relationships composition has a rigorous
semantic, they can be used to trace and to understand
service components. The service composition pattern
supports coarse granularity composition, which is com-
plementary to the existing service composition ap-
proach.

3 Conclusion

Organizing services as components is especially
attractive within service reuse contexts. First, compo-
nents are the sole ingredients of the composition
process, which simplifies the composition model as a
useful and practical process. Secondly, it can improve
service reuse. Components incorporate no implementa-
tion details. They are only metadata describing all
service aspects. Thirdly, the concept of composition
pattern that presents the relationships among compo-
nents supports the reuse of service composition and
testability of service components. The relationships
have a rigorous semantic so that composite components
can be validated at the configuration stage.

References

[1] Cabral L, Domingue J, Motta E, et al. Approaches to seman-
tic web services: an overview and comparisons [EB/OL].
(2004-08) [2006-03-21]. http: //kmi. open. ac. uk/pro-
jects/irs/ cabral ESWS04. pdf.

[2] Huhns M N. Software development with objects, agents, and
services [EB/OL]. (2004-10) [2006-03-21]. http: //www.
open. org. au/ Conferences/oopsla2004 /PapersAO/Key-
note-Huhns. pdf.

[3] Majithia S, Walker D W, Gray W A. Automated composi-
tion of semantic grid services [EB/OL]. (2004-05) [2006-
03-21]. http: // www. wesc. ac. uk/resources/ publications/
pdf/ AHM04,/148. pdf.

314

Chu Wang, and Qian Depei

[4]

[5]

(6]

(7]

Rothenberger M A, Dooley K J, Kulkarni U R, et al. Strate-
gies for software reuse: a principal component analysis of
reuse practices [J]. IEEE Transactions on Software Engi-
neering, 2003, 29(9) : 825 — 837.

Rajasree M S, Reddy P J K, Janakiram D. Pattern oriented
software development: moving seamlessly from require-
ments to architecture [EB/OL]. (2003-05) [2006-03-21].
http: //lotus. iitm. ac. in/LabPapers/STRAWO3. pdf.
Karhunen H. Dynamic method for service-oriented software
design [EB/OL]. (2005-12) [2006-03-21]. http: //www.
hia. no/iris28/Docs/IRIS2028-1034. pdf.

Yang Yanping, Tan Qingping, Yu Jinshan, et al. A new ap-
proach to development of composite web services [J]. Wu-
han University Journal of Natural Sciences, 2006, 11(1):

(8]

(9]

211 —216.

Mandell D J, Mcllraith S A. A bottom-up approach to auto-
mating web service discovery, customization, and semantic
translation [EB/OL]. (2003-11) [2006-03-21]. http: //
www. daml. org/services/pubs/www2003sam-djm-work-
shop. pdf.

Granell C, Gould M, Grgnmo R, et al. Improving reuse of
web service compositions [EB/OL]. (2005-05) [2006-03-
21]. http: // www. geoinfo. uji. es/pubs/ecweb05. pdf.

[10] Chu Wang, Qian Depei, Liu Chuda. Architecture-centric

software process for software reuse [A]. In: Proceedings
of the 8th International Conference for Young Computer
Scientists[C] . Beijing: International Academic Publishers/
Beijing World Publishing Corporation, 2005.217 —222.

T R1EX R FHEMAGES R web [RSEH

Bk

(BRZBRFHFNAFEEAR R, BHL 710049)

%o

. T B 5769 web JRE-453i4 7 iE R 4k

MR R REEENIRSZ R A, JIN3E LIRS

P A A S AMIRGARE A 89 VAL (choreography) , 4 R 7] 4 /& IR 89 IR G- 3R Bk e — 9 4

li‘_#[-i-}ﬂe\ 75 T;}%%H&%ﬁ’j"’]‘ﬁ}ﬂt}i’%%:h T« é’ﬂ_%}?}%’;;&” é/]

BRI Z N KR IFESLT WX

F 0935 L. LB X T VAR 2Ok 3R R B AR R4 R Fe i - BoRg mliK. TT R 25 KWy Tk
BE D WAAT A IR B A A AAHE X AR A 20k 33 R 23

KR 115 3L web; B SURS MM RS- A A58 X,

HE 53235 TP393

