Journal of Southeast University (English Edition)

Vol. 22, No. 3, pp. 357 - 360

Sept. 2006 ISSN 1003—7985

Method of creating ontologies for Prolog clauses

Jiang Zhihua'*

Jiang Yunfei'

(]School of Information Science and Technology, Sun Yat-Sen University, Guangzhou 510275, China)

(*Department of Computer Science, Jinan University, Guangzhou 510632, China)

Abstract: A method is proposed to build an ontology in the form of a conceptual graph for Prolog clauses, so

that the Prolog reasoning engine can differentiate clauses semantically to some degree. The concept model of a

clauses ontology is composed of predicate parameters and head sub-goals, and these sub-goals appear in the head

of the rule body and precede any predicate calls. In the proposed method, a Prolog program can be transformed

into a Prolog + CG program that includes a clauses ontology. Some experiments show that, with a clauses

ontology, some clauses which do not match current goals are not considered early enough, and, therefore, the

size of the goal solution tree may be reduced. By the capability of conceptual graph, a clauses ontology makes

the semantics of the Prolog program more clear and readable, and sometimes it speeds up the solution process

obviously.

Key words: ontology; clause; conceptual graph; Prolog + CG

An ontology is a concept derived from western
philosophy, where it means the theory about being and
its disciplines. In computer science, an ontology is de-
fined as clear and formal specifications of shared con-
ceptual models'"'. In the past two decades, many com-
puter researchers have dedicated much effort to explo-
ration in this field, such as presenting a variety of for-
mal ontology languages, and developing primary tools
used to build and comment ontologies. Ontology meth-
odology has been applied understanding natural langua-
ges, information retrieval and integration, virtual enter-
prises, software requirements acquirement and so
on'"”!. Moreover, an ontology is an explicit definition
of conceptualization, and concept models are involved
into almost every domain. So the ontology methodolo-
gy can be applied in an increasing number of fields.

The reasoning engine in a Prolog environment can
reach all the solutions via a trace-back mechanism, but
the goal solution tree (GST) grows exponentially as
programs become more complex. It is for this reason
that all subgoals in a rule body must join the GST once
the condition in the rule head is satisfied in a rule
clause. Typically, the more clauses a program contains,
the more time is spent in building the GST. On the oth-
er hand, there often exist implicit semantic differences
among different clauses in a Prolog program, for each
clause is used for some specific purpose. Therefore, we

Received 2006-04-25.

Biographies: Jiang Zhihua(1978—), female, graduate, lecturer, jnujzh
@ 163. com; Jiang Yunfei(1945—), male, professor, Incsri0S @ zsu. edu.
cn.

may describe the internal semantic information formal-
ly by building conceptual models for clauses which can
be directly processed by computers.

1 Defining Ontology for Prolog Clauses

Clauses in a Prolog program have two forms: fact
clauses and rule clauses. The difference between the
two kinds of clauses is: when a goal node is matched
by a fact clause, the goal tree will not be expanded fur-
ther; when a rule clause is matched, its body will join
the goal tree as new leaf nodes and the goal tree is ex-
panded. Therefore, to minimize the size of the goal
tree, we only need to build ontologies for rule clauses.
Among a variety of methods for ontology building'*™,
we use the conceptual graph'® (CG) to express an on-
tology for Prolog clauses.

Secondly, what is the ontology of a clause? As
mentioned above, there exist connotative semantic
differences among different rules. In the head of a rule
clause, all the parameters of the predicate can be used
to distinguish among clauses, because we compare two
predicates by means of unification. Besides, in the body
of a rule clause, some relation expressions can also be
used to differentiate clauses. All of the variables in-
volved in a relation expression must be bound in con-
stants first, so the relation expression is determinable.
However, if we meet a predicate call in the body of a
rule, we do not know actually whether the call is suc-
cessful or not. The result of any predicate call is uncer-
tain and we cannot use it to differentiate clauses deter-
minately and clearly. Therefore, we can take advantages
of parameters and some relation expressions to build

358 Jiang Zhihua, and Jiang Yunfei

ontology for clauses. Then, let us give the definitions of
some important concepts and ontology of clauses.

Definition 1 Head sub-goals (HSGs) are a se-
quence of sub-goals in a rule body which starts from
the head of the rule body and ends before the first
predicate call.

Head sub goals can contain relation expressions,
assignment expressions for free variables, any output
expressions and so on, but never a predicate call. For
instance, if we have a predicate “ppl” defined as
“ppl(X, Y, 2): —=X>5,Z=3,Y+Z>6,pp2(X, Y, Z2),
Y>3, pp3(X,Z).” its head sub goals consist of “X >
5,Z2=3,Y+Z>6". And “Y >3” does not belong to
this sequence for the reason that it follows the predicate
call “pp2”. Typically, HSGs reflect the situation of car-
rying out a rule to some degree.

Definition 2 The ontology of a rule clause is a
concept graph composed of a parameter list in a rule
head and the HSGs of the rule body.

Generally speaking, for every rule clause such as
“pp(pa;, pa,, -.., pa,): -HSGs, others”, where “others”
stands for the rest sub goals when HSGs are removed
from the rule body, the conceptual model is depicted in
Fig. 1. In this model, there are three kinds of concept
nodes: First, the predicate name “pp” can be trans-
formed into a concept node “[pp]”’; secondly, each pa-
rameter “pa,” (1 <<i<n)of “pp” can be transformed
into a concept node “[pa,]”; thirdly, assume that HSGs
is composed of “sg,, sg,, ..
“sg;” (1 <j<k) can be transformed into a concept
node “[sg;]”. And we can also use a relation node

., sg,”, then each sub goal

“[para]” to connect “[pp]” and “[pa,;]”, and a relation
node “[hsg]” to connect “[pp]” and “[sg;]”.

— L >3
Cpara > > Chog) g >
pay ’_PazL‘ s | pa, Sgy Sg | -+ | Sgn

Fig.1 Conceptual model for ontology of a rule clause

2 Algorithm of Clause Ontology Building

When a Prolog program is being processed, every
clause which may match the current goal must be sent
to a stack. The clause located at the top of the stack
will be used to expand the goal tree, and the rest (if
any exist) is set a location pointer for tracing back in
the future. The prolog engine judges whether or not to
match only on the basis of the syntax level of a pro-
gram, such as if the predicates can be unified. Howev-
er, this is not the end of the story. We should distin-

guish among clauses by some degree of semantic level

by building an ontology. Our aim is not to change the

internal trace-back mechanism, but to make the goal

tree expand as little as possible.

2.1 Introduction to algorithm ‘clause ontology
building”

We define the clause ontology as a concept graph
composed of a parameters list in the rule head and the
HSGs of the rule body, so, naturally, the algorithm
“clause ontology building” is actually to transfer a Pro-
log program into a Prolog + CG program. Prolog +
CG'" is a tool used to implement a concept graph in a
Prolog programming environment. The algorithm is de-
picted as follows:

Step 1 Build ontology for each clause separately
by translating its related parts into a conceptual graph,
and add them into the original program. For a rule
clause shaped as “pp(pa,, pa,, ..., pa,): -HSGs, oth-
ers”, we obtain its ontology framework as follows:

pp(pa,, pa,, -.., pa,): : [pp] -caseof—

[npp]:-HSGs, npp(pa,, pa,, ..., pa,)

Step 2 Replace the old clauses “pp” with the
new ones “npp”’, which means the clause “pp(pa,, pa,,
...,pa,): -HSGs, others” is changed into “npp (pa,,
pa,, ..., pa,): -others”.

Let us present some explanations for the clause
concept graph. “pp(pa,, pa,, ..., pa,)” is a predicate
object, with predicate name “pp” and parameter list
“pa,, pa,, ..., pa,”. The symbol “::
ject relation, which connects an object and its rule. In

2

stands for an ob-

the rule, “[pp]-caseof — [npp]” means concept rela-
tion, which becomes true only when the rule body is
satisfied. And the new predicate “npp” can be used to
transmit variables, which makes those not-ontology ele-
ments obtain the values which have been bound into
these variables. The clause concept graph created in
step 1 is called the ontology for clauses since it is help-
ful in differentiating clauses into some degree of se-
mantics. Moreover if a concept relation is false, the
not-ontology elements of the clause do not need to join
into the goal tree, and thus the scale of the goal tree is
reduced.

2.2 [Example for applying the algorithm of ‘“clause

ontology building”

We have a Prolog program, which is transferred
into a Prolog + CG program containing clause ontology
by applying the algorithm “clause ontology building”.
These two programs are compared in Tab. 1, with their
query and answer at the same time. Here, paral, para2
and para3 are new predicate names which are produced
randomly. “sup(y,4), inf(y, 2), dif(x, 1), dif(x,2)” are

Method of creating ontologies for Prolog clauses 359

relation expressions: sup(y, 4) is true when y is more
than 4; inf(y,2) is true when y is less than 2; dif(x, 1)

is true if x cannot be unified with 1. Here, “val” is as-
sumed to be a predicate call.

Tab.1 Transferring a Prolog program into a Prolog + CG program

Program types Program Query Answer
action(1, y): —sup(y,4), val(yl, add(1,y)), write(yl); ? —action(2,1). 3
Prolog action(2, y): —inf(y,2), val(yl, add(2, y)), write(yl); {}
action(x, y): —dif(x, 1), dif(x,2), val(yl, add(x, y)),
write(“x is not 1,2; it is”), write(x), write(yl).
Universal > action, paral, para2, para3; ? —run. 3
action(1, y): : [action] — caseof—[paral]: —sup(y,4), paral(1,y); {}
action(2, y): : [action] — caseof—[para2]: —inf(y,2), para2(2, y);
action(x, y): : [action] — caseof—[para3]: —dif(x, 1), dif(x,2), para3(x,y).
Prolog + CG *

paral(1,y): —val(yl, add(1,y)), write(yl);

para2(2,y): —val(yl, add(2,y)), write(yl);
para3(x,y): —val(yl, add(x, y)), write(“x is not 1, 2; it is”), write(x), write(yl).

run: —action(2,1)::G.

Note: * You may notice that we add a clause “run” in the second program, for the purpose of avoiding outputting the value of variable G (G =

[action] -caseof—[para2]) in “action(2,1)::G”.

It is clear that the output of the two programs is the
same. Actually, they are equivalent because the transfor-
mation depicted above will not change the original
meaning of the program. The new program is added with
some clause concept graphs which may make the pro-
gram longer, but make the semantics of clauses clearer
and sometimes greatly reduce the size of goal tree.

3 Experimental Analyses

In the process of solving a program, we can also
use the “debug” window to display the goal tree at
any given time. In Fig. 2, the scenario in the two win-
dows is the same: When the program finds a solution
successfully by matching the goal “action(2,1)” with
the second clause, it begins to search the next possible
solution by trying the third clause through back-trace.
We can see that the number of nodes expanded in the
second window is less than that of those in the first
window in this specific scenario. In Prolog + CG en-
vironment, the “edit” window displays a Prolog source
program, the “output” window illustrates a query and
answer, and the “debug” window shows the goal tree
at any time.

Here, we have a conclusion about how clause on-
tology can influence the scale of the goal tree. Sup-
pose that in a rule clause, the number of sub-goals in
the rule body is N, , among which the number of sub-

sub?

goals belonging to HSGs is N,,. When a concept rela-

-
tion is selected, an additional n(g)de is added to the cur-
rent goal tree (because of the new predicate “npp”).
However, if the concept relation is not true (for may-
be some HSG is not satisfied), there are N, — (1 +
N,,) nodes which do not need to join the goal tree

(Generally speaking, N, is much greater than N,).

For example, in Fig. 2, N, is six and N, is two, so

sub

Fig.2(a) expands three nodes more than Fig.2(b).

(b)
Fig.2 The goal tree in the debug window. (a) The old pro-

gram; (b) The new program

4 Conclusion

In this paper, we give a definition of ontology for
Prolog clauses in the form of a concept graph. And we
also present an algorithm of “clause ontology build-
ing” to create ontologies for clauses in the Prolog +
CG environment. The clause ontology may make a
program longer, but it makes the semantics of clauses
clearer and sometimes greatly reduces the size of goal
tree. At the same time, the trace-back mechanism has

360 Jiang Zhihua, and Jiang Yunfei

undergone little change, because the trace-back for ob-
jects is built into clause ontology, not the clause itself.
Another function is to enrich the definition of the
clause ontology and describe it in other formal ontolo-
gy languages and integrate into the Prolog engine. An-
yway, we think that our work is significant and crea-
tive, and we hope that this paper will have a positive
effect on research and applications of ontology meth-
odology.

References

[1] Li Shanping, Hu Yujin. Overview of researches on ontolo-
gy [J1. Journal of Computer Research and Development,
2004,41(7):1041 —1052. (in Chinese)

[2] Liu Jin, He Keqing, Li Bing. Researches on logical seman-
tic analyses of web ontology languages [J]. Computer En-

gineering,2005,31(9):7 —10. (in Chinese)

[3] Uschold M, Gruninger M. Ontologies: principles, methods,
and applications [J]. Knowledge Engineering Review,
1996,11(2):93 —155.

[4] Fernandez M. Overview and analysis of methodologies for
building ontologies [J]. Knowledge Engineering Review,
2002,17(2):129 - 156.

[5] Bisson G, Nedellec C, Canamero L. Designing clustering
methods for ontology building[A]. In: Proceedings of the
ECAI Ontology Learning Workshop[C] . Berlin, Germany,
2000. 13 - 19.

[6] Fargues J, Landau M C. Conceptual graphs for semantics
and knowledge processing[J]. IBM Journal of Research
and Development, 1986,30(1):70 —79.

[7] Kabbaj A, Janta-Polczynski M. From PROLOG + + to
PROLOG + CG: a CG object-oriented logic programming
language[A]. In: Ganter B, Mineau G W, eds. Proceedings
of ICCS’00, LNAI[C]. Springer, 2000, 1867: 540 —554.

— #4315 Prolog 12 FF F R A MBI 7 %

1,2
&

25k

("L kFREERAFEHRAFR, M 510275)
(CBaRFIHENEA, M 510632)

E . 4 7 4% Prolog 2 5| T AN — AR F 695 L LR R 4 F 4, i@ A B 695 X 3+ Prolog
RGO EIAK FOARGMAREA AL LTS5 kT AAFRES, mkT AAFLIH
IR AR & 355 BAL TAEATI8 358 A Z AT 69 T B A7 4. PT3% 8 49 7 ik de— /> Prolog #2 /5 4%
PR ELA - F 6] AR 6y Prolog + CG #2 5. 52 e & B, i@ id * Prolog F &) 3 s AR, T AR T3 K ik
5 4 a] B AR 2R KAL) T 4, iR AT B AR R A 69 BLAL R). A B ME B X T, T4 4k
WAL AT Prolog A2 5 49 35 U AW T 3, 42 35 2o by DU T AR BA R hm B f2 5 09 KA 42,

RBIWR AAR ;T 6] 5B B ; Prolog + CG
HE 5 2ES TPIS

