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Abstract: Global semantic structures of two large semantic networks, HowNet and WordNet, are analyzed. It is

found that they are both complex networks with features of small-world and scale-free, but with special

properties. Exponents of power law degree distribution of these two networks are between 1. 0 and 2. 0, different

from most scale-free networks which have exponents near 3. 0. Coefficients of degree correlation are lower than
0, similar to biological networks. The BA (Barabasi-Albert) model and other similar models cannot explain their
dynamics. Relations between clustering coefficient and node degree obey scaling law, which suggests that there

exist self-similar hierarchical structures in networks. The results suggest that structures of semantic networks are

influenced by the ways we learn semantic knowledge such as aggregation and metaphor.
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We are concerned the ontogeny and phylogeny of
human knowledge. How did the knowledge systems of
a man come into being? How did the semantic struc-
tures in natural languages as the knowledge representa-
tions of the whole community evolve? In this paper,
structures of two large semantic networks, WordNet
and HowNet, are analyzed and what dynamic mecha-
nisms caused their structures is discussed.

Semantic networks were proposed by Collins and
Quillian. They suggested using networks to represent
concepts and their relations''. After that, several large
scale semantic networks have been constructed. Word-
Net was proposed by George Miller and developed by
him and his colleagues'”. It uses synonym sets ( syn-
sets) to represent lexical concepts. Multiple word forms
are connected to a synset if these word forms are syno-
nyms. Synsets are connected to other synsets by seman-
tic relations. WordNet 2. 1 contains more than 14 x 10*
word forms and more than 10° synsets. There are rela-
tions between word forms and synsets or among them-
selves. HowNet is a bilingual common-sense knowledge
base that encodes inter-conceptual relations and inter-at-
tribute relations of concepts”. HowNet is an organic
knowledge system more than a semantic dictionary.
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Some research has been done in recent years con-
cerning the network structures of language and seman-
tic networks. The research concerns networks based on
conceptual similarity, neighboring words in sentence

481 Different from most of these re-

and association
searches, we extract networks from WordNet and
HowNet based on their semantic relations. We are on-
ly concerned with synsets of WordNet and the rela-
tions between synsets in this paper because they repre-

sent the meaning structure of English.

1 Some Related Concepts of Complex Net-
works

The research of complex networks has led to a
tremendous amount of interest in the study of complex
systems in the real world, including the Internet and
the world wide web, the food chain web, social net-
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works and biological networks, etc” ™ The most in-

teresting features of complex networks are scale-

! and small-world” .

free!”

The statistical quantities characterizing small-
world networks are clustering coefficient C and the
average length of the shortest path L. The clustering
coefficient is the probability that any two nodes are
connected to each other, given that they are both con-
nected to a common node. The average length of the
shortest path measures the minimal number of links
connecting two nodes in the network. Following Watts

and Strogatz, for a network with n nodes, we calculate
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C by taking the average value of clustering coeffi-
cients over all nodes i,
T

n n 2i
;Ci — ; ki(ki _l)

C = =
n n

where T; denotes the number of connections between
the neighbors of node i, and k;(k, —1)/2 is the num-
ber of connections in a fully connected graph with k;
nodes''”’. A path is a sequence of edges that connect
one node to another. The path length is the number of
edges along the path. Denote the shortest path length
between nodes i and j as L;. The average length of the
shortest path L measures the average minimal path

connecting two nodes in the network.
i#j

2 L,
n(n -1)
Regular networks have high clustering coeffi-

L =

cients and large average lengths of the shortest paths,
as opposed to random networks which have low clus-
tering coefficients and small average lengths of the
shortest paths. Between these two extremes some-
where, the clustering coefficient is almost as high as
that of a regular network while the average length of
the shortest path is almost as small as that of a random
network with the same number of nodes and edges.
This type of networks is called as “small-world” for it
is similar to the small-world phenomenon. The aver-
age length of the shortest path of small-world net-
works increases slowly with the total number of its
~In(N).

The study of scale-free networks concerns behav-

nodes: L

ior in the probability distribution of degree, the possi-
ble number of links at a random chosen node in the
networks. Unlike the Poisson degree distribution for
random networks, in a scale-free network, the distribu-
tion of degree follows a power law, P(k) ock™”, where
k is the degree of nodes and P (k) is the probability
that the degree of an arbitrary node equals k. In such a
network most nodes have only a few connections and
a few nodes have very large number of neighbors'”'.
Barabasi and Albert demonstrated that the power
law distribution could be caused by two basic factors:
growth and preferential attachment ( BA model).
Growth means the number of nodes keeps increasing
and the preferential attachment means, as the new
nodes appear, that they tend to connect to the more
connected nodes. The probability for a new node to be
connected to an existing node is proportional to the

degree of the existing node. A growing network obe-

ying preferential attachment will have an exponent y
typically near 3. 0",

It has been discovered recently that aggregation
and regeneration of nodes can also lead to the power

law distribution of degree'' ™"

. Kim and his coopera-
tors proposed a network model in which nodes can
merge with one of their neighbors and new nodes be
added to the network to maintain the number of

[11]

nodes' . Another model proposed by Alava and

Dorogovtsev allows for the aggregation of nodes

12 .
121 Those mechanisms

which are selected at random
give us new insights into how scale-free networks e-
merge.

Different from BA model networks, some real
scale-free networks have hierarchical structures. A
model with a network duplication mechanism can
cause such a structure'"”’ . It displays a hierarchical and
coarse-grained similarity. This intrinsic hierarchy can
be characterized in a quantitative manner. The cluste-
ring coefficient of a node with k links follows the
scaling law C (k) ~ k~'. This type of structure can
give an explanation of the feature of the small-world
in many scale-free networks.

Degree correlation coefficient r can distinguish
assortative and disassortative networks. In assortative
networks, nodes with many connections tend to be
connected to other nodes with many connections. It is
found that social networks are often assortative while

[14]

biological networks are often disassortative" . r can

be measured by

AW

1. ?
M- z [M]ZT(.]i-'-ki)]
where j,, k; are the degrees of the vertices at the ends
of the i-th edge, with i =1,2,...,. M

[y X0 +hy]

L vr

2 Complex Networks Properties of Seman-
tic Networks

We analyze seven kinds of properties of the net-
work: sparsity, diameter, shortest path length, cluste-
ring coefficient, degree distribution, relation between
clustering coefficient and degree, and degree correla-
tion. Some results are shown in Tab. 1, where N is the
number of nodes; C), is the connectedness, the follow-
ing data are restricted to the largest components; k is
the average degree of nodes; y is the power law expo-
nent for degree distribution; « is the scaling law expo-
nent for C(k); D is the diameter of networks; L is the
average shortest path length; In( N)is the average shor-
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test path length of small-world networks with N
nodes; C is the clustering coefficient; C, is the cluste-
ring coefficient of random graphs with the same size
and density; r is the degree correlation coefficient.

Clustering coefficients of semantic networks are com-
pared with random networks. These random networks
have the same size and connection density as corre-
sponding semantic networks.

Tab.1 Summary statistics for meaning structure of semantic networks

Semantic network N Cy/ % k % D L In(N) C C, r
WordNet 117 948 96. 8 3.1 1. 65 0.99 21 8.17 11. 65 0. 045 0. 000 05 -0.07
HowNet 55559 100 5.9 114 0.88 10 3.90  10.93  0.238  0.00015  -0.13
A node has only 5.9 neighbors on average in 10°7
HowNet. In WordNet this data is 3. 1. Despite their
sparsity, all of them have a very large component, 1074 ¢ Z(fi,zsk 7
while the largest connected component of the random =
network only consists of almost half of all the nodes. E 0
Those features suggests that human beings can effi- E 10-3 0.25
ciently (in a sense use only a few connections) organ- £ 0.15
ize their knowledge in an integrated system. 107* [ 0.05
Contrasted with the large component, network 103 0 5 1015 ‘ .
exhibits very low diameter and short average path 10° 10' Desree k 10? 10°
length. The diameter of HowNet is 10 and the average ?r:;
shortest path length is 3. 9. That means that there only 1007
need be an average of four links to associate two
nodes in HowNet. The corresponding statistics of 107!
WordNet are larger due to larger node numbers and = .
lower connection numbers but they are still lower than Q; 10
In(N) . The clustering coefficient of HowNet is 0. 238 E 10-3 }0-20
and WordNet is 0. 045. All are distinctly larger than £ 0.10
the corresponding random networks with the same size 10741
and density. We can conclude that they are all small- 00 5 10 15 20
world networks. 10_5100 10 10° 10° 10°
The degree distributions are measured by group- Def(;rs;e k
ing all values of k into several bins of consecutive val- Fig.1 Degree distributions with the best fitting power

ues based on logarithmic coordinates and computing
the mean value of k for each bin. Different from most
scale-free networks which have exponents near 3.0,
the exponents of the best fitting power law of HowNet
and WordNet are in the range of 1.0 and 2.0 (see
Fig. 1). This property shows that it is a very special
type of scale-free network. It also suggests that it is
not enough to use only preferential attachment mecha-
nism or something similar to it to simulate the devel-
opment of semantic knowledge because such a mecha-

nism leads to an exponent near 3.0'"

. The degree
correlation coefficients of these networks are all lower
than O, which cannot be explained by the preferential
attachment mechanism. The degree correlation of the
BA model nearly equals 0''*'.

We also check the relationships between cluste-
ring coefficients and degrees. Fig. 2 shows the average
clustering coefficients of nodes with corresponding de-

grees. They are also measured by grouping all values

law distributions. (a) WordNet synsets; (b) HowNet( The insets

depict the degree distributions for equivalent random networks. )

of k into bins of consecutive values and computing the
mean value of clustering coefficients for each bin. All
of them display a scaling law with exponents near
1. 0. These evidences strongly suggest that human be-
ings organize their knowledge in hierarchically organ-
ized structures with self-similar properties. It also pro-
vides an explanation of the small-world feature of

these networks'"’ .

3 Cognitive Mechanisms

Based on the scale-free network models' '™,

there exist three kinds of mechanisms which can pro-
duce scale-free networks. But none of them can ex-
plain the statistic properties of semantic networks sole-
ly. Growth and preferential attachment cannot explain
the scale law between clustering coefficient and de-
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Fig.2 Statistical C(k) with the best fitting scaling laws.
(a) WordNet synsets; (b) HowNet

gree. Aggregation and merging cannot explain the
small-world feature. Hierarchical network models can-
not explain their disassortative features.

These three mechanisms all exist in semantic
knowledge learning processes. Semantic knowledge
obviously always grows. There is no evidence of pref-
erential attachment, but we always learn new knowl-
edge based on current knowledge, which means the
new knowledge can attach to networks when they
have relations to old nodes. When we face new
knowledge, we tend not to use our weak domain
knowledge but our “hub” nodes, professional domain
knowledge, to explain it. For example, an economist
tends to use economics core concepts such as market,
money, price and commodity to explain social and
natural phenomena while a physicist maybe prefers to
use physics concepts such as force, movement, dynam-
ics. When the knowledge system of a man is abstract-
ed to nodes and links in networks, it seems as if new
nodes prefer to be attached to “hubs”.

Aggregation and merging also exist in cognition
processes. Cognition processes such as from specific
to generic, or induction, can be treated as aggrega-
tion. And we use aggregation and merging to form
new words in language. The need of aggregation and
merging comes from communication and mind opera-
tion. Compact and quick communication strengthens

our viability. Based on the theory of Consciousness
Theater, our capacity of working memory is limited,
which means we cannot handle so many elements con-

. : 15
sciously at the same time'"’

. Operations with abstract
concepts can help us use fewer elements in our con-
sciousness to handle complex environments and condi-
tions.

One way to obtain hierarchical and self-similar
networks is to duplicate part of the networks'"'. We
can find that this operation is also a cognition
process. A similar operation we frequently use is

learning through metaphors''”

. To give an example in
cognition science, a computer scientist who knows a
little about mind may get some idea on how the mind
works if he learned the computer metaphor which says
the mind operates like a computer. In this process we
can say a duplicate of the knowledge frame of the
computer structure is added to his knowledge network
as a representation of how the mind works.

None of the mechanisms can explain the structure
of semantic networks solely, but all of them exist in
semantic cognition processes. We need a model which
combines all of these mechanisms.

4 Discussion

It is clear that those semantic networks as repre-
sentations of meaning structures of human beings have
features of complex networks, small-world and scale-
free. These features will make human knowledge
structures have advantages that complex networks pos-
sess. However, there are noticeable differences be-
tween semantic networks and typical scale-free net-
works. The exponents are a prominent difference. All
of the semantic networks have exponents lower than
2.0. And the degree correlation coefficients are lower
than 0. These are similar to technological and biologi-
cal networks. There also exist scaling laws between
clustering coefficients and degrees. This provides evi-
dence that semantic knowledge may be organized in a
hierarchical and self-similar structure. All these remind
us that a single mechanism cannot explain the statisti-
cal results. We need a combinatorial model. The next
work that needs to be done is to find a model which
combines these mechanisms and it is also necessary to
clearly explain the structures and dynamics of seman-
tic networks.
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