Journal of Southeast University (English Edition)

Vol. 22, No. 3, pp. 435 —438

Sept. 2006 ISSN 1003—7985

Parallel algorithm of generating closure of RDFS source

Miao Zhuang' Zhang Yafei’

Lu Jianjiang' Song Zilin'

('Institute of Command Automation, PLA University of Science and Technology, Nanjing 210007, China)

(*Training Department, PLA University of Science and Technology, Nanjing 210007, China)

Abstract: To decrease the time of generating a closure, a parallel algorithm of generating the closure of a
resource description framework schema (RDFS) source is presented. In the algorithm, RDFES triples in the source
are classified according to the forms of triples in the entailment rules and it reduces the scope of searching for

specific triples. The dependence among the classes of triples is analyzed. Based on the classification, the initial

RDFS source is partitioned into several subsets. The subsets are distributed to each process, and the closure is

generated in parallel by applying the RDFS entailment rules. Parallel generating the closure of an RDES source

takes less time and increases efficiency.

Key words: parallel; closure; resource description framework (RDF) graph; RDFS source

The resource description framework (RDF) se-
mantics specification provides a model-theoretic de-
scription of the semantics of RDF and resource descrip-
tion framework schema (RDFS)'". It also contains
RDEFS entailment lemma, describing a set of entailment
rules. In use of these rules, the closure of an RDFS
source can be generated and efficient reasoning services
can be provided.

Several proposals have explored the generation of
closure for inference on RDF models. Lassila used the
entailment rules in the RDF semantics for RDF schema
reasoning'” . However, the approach is limited to a sub-
set of the RDF schema semantics. The SWI-PROLOG
semantic library also provides limited support for RDF
schema reasoning"’ . In the infrastructure, the transitive
closure of sub-class and sub-property relations can be
accessed directly. Christophides et al.'*! presented a
similar approach to creating special index structures for
answering queries about hierarchical relations in RDF
models. Broekstra proposed a pruning iterative forward
chaining algorithm to compute the deductive closure of
an RDF model"” . The algorithm is implemented in the
Sesame system'®'.

As the size of RDFS sources becomes larger and
larger, serially generating the closure takes too much
time and memory. A better way is to generate the clo-
sure in parallel. In this paper, a parallel algorithm of

Received 2006-04-10.

Foundation item: The Weaponry Equipment Foundation of PLA
Equipment Ministry (No.51406020105JB8103) .

Biographies: Miao Zhuang (1976—), male, graduate; Zhang Yafei
(corresponding author), male, doctor, professor, yf _ zhang888 @ sina.

com.

generating the closure of an RDFS source is proposed
to decrease time and increase efficiency.

1 Background

1.1 RDFS entailment rules

RDFS extends RDF by assigning an externally
specified semantics to specific resources. It is only be-
cause of these external semantics that RDF schema is
useful. These semantics cannot be captured in RDF,
whereas they can be revealed by applying RDFS entail-
ment rules to derive new statements. The RDFS entail-
ment rules are shown in Tab. 1.

By applying the rules in Tab. 1, more statements
can be inferred and the semantics implied by an RDFS
source are represented in the form of explicit state-
ments.

1.2 Definition of closure

An RDFS source is a set of RDF(S) triples. A set
of triples is defined as an RDF graph!”’. An RDF mod-
el can also be seen as a set of statements or as the
graph induced by these statements. For reasons of con-
venience, we do not distinguish the term RDFS source,
the RDF graph and the RDF model in the rest of this
paper.

When talking about an RDF model, we find that it
contains two types of statements, explicit and implicit.
The explicit statements refer to the statements con-
tained in the model. The implicit statements refer to
what are contained implicitly, which can be made ex-
plicit by the rules in Tab. 1. We call the set of all state-
ments, both explicit and implicit, the closure of a mod-
el.

436 Miao Zhuang, Zhang Yafei, Lu Jianjiang, and Song Zilin
Tab.1 RDFS entailment rules
Rules If T (the triple set) contains Then add
| (s ply, where [is a plain literal (_:n rdf: type rdfs: Literal), where _:n
(with or without a language tag) . identifies a blank node allocated to /.
2 (p rdfs: domain ¢), (s p 0) (s rdf: type c)
3 (p rdfs: range ¢), (s p r) (r rdf: type ¢)
4 (spo) (s rdf: type rdfs: Resource)
(spr) (r rdf: type rdfs: Resource)
5 (p, rdfs: subPropertyOf p,), (p, rdfs: subPropertyOf p;) (p, rdfs: subPropertyOf p,)
6 (p rdf: type rdf: Property) (p rdfs: subPropertyOf p)
7 (p, tdfs: subPropertyOf p,), (s p, 0) (spy0)
8 (¢ rdf: type rdfs: Class) (¢ rdfs: subClassOf rdfs: Resource)
9 (¢, rdfs: subClassOf ¢,), (s rdf: type ¢,) (s rdf: type ¢,)
10 (¢ 1df: type rdfs: Class) (¢ rdfs: subClassOf c)
11 (¢, rdfs: subClassOf ¢,), (¢, rdfs: subClassOf ¢) (¢, rdfs: subClassOf c;)
12 (p rdf: type rdfs: ContainerMembershipProperty) (p rdfs: subPropertyOf rdfs: member)
13 (s rdf: type rdfs: Datatype) (s rdfs: subClassOf rdfs: Literal)

Definition 1 The closure of an RDF graph G is
the graph defined by the set of all triples that are im-
plied by G. Denote the closure of a graph G as c(G).

The RDF semantics specification suggests that an
RDFS closure is defined to be the graph resulting
from the following processes'"':

(D Add T to all the RDF and RDFS axiomatic tri-
ples;

@ Apply rule Ig(Literal generalization rule: if T
contains uuu aaa lll, then add uuu aaa _: nnn. Where
_:nnn identifies a blank node allocated to the literal
[l by this rule.) to any triple containing a literal until
the graph is unchanged by the rule;

® Apply rules rdf2 and rdfsl until the graph is
unchanged;

@ Apply rule rdfl, rule gl (Literal instantiation
rule: if T contains uuu aaa _: nnn, then add uuu aaa
lll.) and the remaining RDFS entailment rules until
the graph is unchanged.

After the process above, all the implicit state-
ments of an RDFS source can be presented explicitly
in the form of new-derived statements. However, in
the context of generating the closure of an RDFS
source, it is enough to apply the RDFS entailment
rules instead of the whole process above. Broekstra et
al. proposed a pruning iterative forward chaining al-

gorithm"' . A similar idea is adopted to deal with the
rules and a parallel algorithm is proposed to generate

the closure.

2 Algorithm Design

2.1 Classifying RDFS triples
The algorithm in Ref. [5] did not distinguish
among different triples and treated all those equally,

thereby searching in the whole triple set for the state-
ments needed. Given a certain rule with two premise
statements, when one statement triggering the rule is
captured, the other statement has to be searched in all
of the triples, thus affecting the efficiency of the algo-
rithm. In fact, for some rules, it is not necessary to
search in all triples for the given statement. For in-
stance, for rule 1, it is enough to search for the trigger
statement like (s p [) instead of (s p o).

We modify the strategy of searching for the given
triple. According to the forms of triples occurring in
the entailment rules, we classify the RDFS triple set T
into several subsets. The subsets are shown in Tab. 2.

Tab.2 Types of triples in the entailment rules

Set T; Type of triples
T, (spl)
T, (_:n rdf: type rdfs: Literal)
T, {p rdfs: domain o)
T, (spo)
Ts (s rdf: type o)
T, (s rdfs: range o)
T, (s rdf: type rdfs: Resource)
Ty (s rdfs: subPropertyOf o)
Ty (s rdf: type rdf: Property)
Ty (s rdf: type rdfs: Class)
T, (s rdfs: subClassOf rdfs: Resource)
T, (s rdfs: subClassOf o)
Ty (p rdf: type rdfs: ContainerMembershipProperty)
T4 (p rdfs: subPropertyOf rdfs: member)
Tys (s rdf: type rdfs: Datatype)
T (s rdfs: subClassOf rdfs: Literal)

The relation among 16 triple sets is as follows.
T,,T,, T, T, Ty and T, are all the subsets of 7,. T3,
T, T,, Ty and T, are not intersectant to each other.
1,,T,,T,, Ty, T}; and T)5 are all the subsets of T and
not intersectant to each other. 7', is the subset of T5.

Parallel algorithm of generating closure of RDFS source 437

Both T}, and T, are the subsets of T, and not inter-
sectant to each other. After classifying the RDFS tri-
ples, the scope of searching for the triples triggering
rules becomes smaller and thus efficiency is im-
proved.

2.2 Partitioning the initial RDFS source

Before parallel generating the closure, the number
of processors has to be determined. Our goal of desig-
ning the parallel algorithm is to decrease the execution
time. We determine that every single processor deals
with one entailment rule and, therefore, 13 processors
are needed.

With respect to the parallel generation of the clo-
sure, partitioning the initial source and distributing
them to each process is a basic step. It is not optimal
to divide the RDFS triples into several subsets with
the same size and distribute them to every processor.
Each processor deals with one entailment rule, and di-
viding the triples averagely cannot ensure that all the
triples needed by a given rule are stored in one indi-
vidual processor, which leads to great number of mes-
sages among processes.

To decrease the number of messages, we analyze
the minimal triple sets each process needs. Observing
each entailment rule and the triple sets occurring in
the rule, we can capture the dependence among the tri-
ple sets. The dependence is shown in Fig. 1. Where
“Rule, 7,7 below beelines or beside arcs with arrow
denotes that applying rule i, a statement of the triple
set in circle and a statement in 7; may derive a new
statement belonging to the triple set pointed by the ar-
row. “Rule 4, (2)” denotes that by applying this rule,
one statement can derive two new statements.

Rule 11, Ty

— = T,)
Rule4, >

Rule 12

Fig.1 The dependence among triple sets

Rule 9, Ts

Rule 3, T

In Fig. 1, we discover that for a certain RDFS
source, the number of triples in some sets, for exam-
ple, T,; and T, is constant and applying rules 12 and
13 once respectively is enough. Moreover, the se-
quence of applying these rules has no effect on the re-
sults of applying other rules.

According to the types of triple sets occurring in
each RDFS entailment rule, we partition the RDFS tri-
ples into several subsets. For instance, T; and 7, are
the triple sets that trigger rule 2, so we distribute both
T, and T, into the same triple subset, called D,, and so
on.

3 Parallel Generating a Closure

The key step of generating the closure of an
RDFS source is applying the entailment rules to derive
statements and exchange the statements needed by dif-
ferent rules among the processes. First, each process
obtains the partitioned subset of initial RDFS triples
and stores it locally. Secondly, applying the given
rule, each process produces new statements. Thirdly,
each process sends the new-derived statements to the
processes requiring them and receives the statements
from other processes by function MPI_ SEND() and
MPI _ RECV () respectively. Finally, each process
gathers all the triple subsets to the array RsClosure by
function MPI _ Gather(). The parallel algorithm based
on the message passing interface (MPI) is shown as
follows:

Input: Subset of RDFS source D;(i=1,2, ...,13).

Output: The closure of an RDF graph (RsClosure) .

/ * Parameter: nproc (the number of process), myid (process la-
bel), newTri (the triple derived), recvTri (the triple from other proces-

ses) x/

Methods:

{
MPI _ Init (&argc, &argv) ;
MPI _ Comm _ size (MPI _ COMM _ WORLD, &nproc) ;
MPI _ Comm _ rank (MPI_ COMM _ WORLD, &myid) ;
Data _ input (D,);
MPI _ Barrier (MPI _ COMM _ WORLD) ;

/ % Synchronize all processes * /

If (myid = =0)
startwtime = MPI _ Wtime () ;
new =1;

while (new ! =0)
{
if (triggered(myid +1))
{
newTri = applyRule(myid +1);
/ * Applying rule myid + 1, derive new triples * /
typeOfTriple = classify (newTri);
/ # Classify the new-derived triples #* /
needproc = partition (typeOfTriple) ;
/ # Determine the number and ID of the processes needing it s/
for (i =0; i{needproc. num; i++);
MPI _ SEND (newTri, strlen (newTri), MPI_ UN-
SIGNED _ CHAR, needproc. id[i{], i, MPI _. COMM _ WORLD) ;
/ * Send the new-derived triple to the process needing it * /
}
else
new =0;
MPI _ RECV (recvTri, MaxTriLen, MPI _ UNSIGNED _
CHAR, MPI_ ANY _ SOURCE, MPI _ ANY _ TAG, MPI_ COMM _
WORLD, &status) ;

438 Miao Zhuang, Zhang Yafei, Lu Jianjiang, and Song Zilin

/ # Receive the triples sent by other processes * /
If status = = MPI_ SUCCESS

{
typeOfTriple = classify (newTri);
/ % Classify the triples received =/
add _ tri (recvTri, setOfTri(typeOfTriple)) ;
/ % Add triples received into corresponding triple set * /
new =1;
}
else
new =0;
}
If (myid = =0)
{
MPI _ Gather (sOfTri, RsClosure, MPI - COMM _ WORLD) ;
/ # Gather all the triple sets distributed in each processor, obtai-
ning the closure */
endwtime = MPI _ Wtime () ;
printf ("wall clock time = % f\n", endwtime - startwtime) ;
Return RsClosure;

}
MPI _ Finalize () ;

}
4 Conclusion

We present a parallel algorithm of generating the
closure of an RDFS source. After classifying the tri-
ples, according to the dependence among all types of
triple sets, we partition the initial RDFS source into
subsets and distribute them to each process. For each
process executing one RDFS entailment rule, the clo-
sure is generated in parallel. Classifying RDFS triples
can reduce the scope of searching for the trigger state-
ments, therefore, parallel generating the closure makes
it possible to increase efficiency.

Our parallel algorithm is suitable for generating
the closure of an RDFS source of large size. In the use

of the algorithm, each processor has to store all triple
sets that may trigger a given rule. With the increase of
new-derived statements, the quantity of messages
among processors grows large and thus performance
decreases. The research on how to solve this problem
is the future work.

References

[1] Hayes P. RDF semantics [EB/OL]. (2004-02-10) [2006-
01-30]. http: //www. w3. org/TR/2004/REC-rdf-mt-
20040210/

[2] Lassila O. Taking the RDF model theory out for a spin
[A]. In: Lecture Notes in Computer Science[C]. Springer-
Verlag, 2002, 2342: 307 —317.

[3] Wielemaker J, Schreiber G, Wielinga B. Prolog-based in-
frastructure for RDF: scalability and performance [A]. In:
Lecture Notes in Computer Science[C]. Springer-Verlag,
2003, 2870: 644 — 658.

[4] Christophides V, Plexousakis D, Scholl M, et al. On labe-
ling schemes for the semantic web [A]. In: Proceedings of
the 12th International World Wide Web Conference [C].
Budapest, Hungary, 2003. 544 —555.

[5] Broekstra J. Storage, querying and inferencing for semantic
web languages [D]. Amsterdam, Netherlands: Vrije Uni-
versity, 2005.

[6] Broekstra J, Kampman A, van Harmelen F. Sesame: a ge-
neric architecture for storing and querying RDF and RDF
schema [A]. In: Lecture Notes in Computer Science[C].
Springer-Verlag, 2002, 2342:54 —68.

[7] Hayes P. RDF model theory [EB/OL]. (2004-02-10)
[2006-01-30]. http: //www. w3. org/TR/2002/WD-rdf-
mt-20020429/.

RDFS # iR HITHA S E R EHix

W

I

i R AMH

(' MARRIKFIHEOHLER, A7 210007)
(® MR EE TR FN%ER, &7 210007)

E A TR M ey A M et i, 3k T —4F RDFS # 3R M @) 7 A Ak m A E AT
RDFS 22 HL00) & &%) 6, A8 = 04069 4 R AT 3048 8 P 69 RDFS — 404750k, B THEH
REAAGARTEE ;9T S L ZTAN G IHERARB K F , ST BH IR AT E oy = nmi
I B IERXN 4 AT &, BT R FAZAN AT T, JF 2 A RDFES 322 ML 547 3 & A%,
FR) 6. FFAT 00 1) 6L A A% vk ST VAR 2K ML, Y 3B AT R T VAR 3 1) 6L AR, 04 R

X $238 : 7H47; M & ;RDF B ;RDFS #3% &
HE 525 TP182

