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Joint eigenvalue estimation
by balanced simultaneous Schur decomposition

Fu Tuo Gao Xigqi
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Abstract: The problem of joint eigenvalue estimation for the non-defective commuting set of matrices .7 is
addressed. A procedure revealing the joint eigenstructure by simultaneous diagonalization of .7 with
simultaneous Schur decomposition ( SSD) and balance procedure alternately is proposed for performance
considerations and also for overcoming the convergence difficulties of previous methods based only on
simultaneous Schur form and unitary transformations. It is shown that the SSD procedure can be well
incorporated with the balancing algorithm in a pingpong manner, i. e., each optimizes a cost function and at the
same time serves as an acceleration procedure for the other. Under mild assumptions, the convergence of the
two cost functions alternately optimized, i. e., the norm of .Z and the norm of the left-lower part of .7, is
proved. Numerical experiments are conducted in a multi-dimensional harmonic retrieval application and
suggest that the presented method converges considerably faster than the methods based on only unitary
transformation for matrices which are not near to normality.
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The problem of joint eigenvalue estimation for
general non-defective matrices sharing the same set of
eigenvectors is often encountered in many signal pro-
cessing applications, e. g., the 2-D direction of arrival
(DOA) estimation'", the joint angle-delay estima-
tion'”! and the multidimensional harmonic retrieval'’' .

A number of algorithms have been proposed for
solving this problem. For the specific case of two real
matrices with real eigenvalues, the simple T algorithm
is proposed in Ref. [4]. For the general case, one
method is to compute the eigenvalues of each matrix
individually and then associate them, see Ref. [5] and
the references therein. The disadvantage of these algo-
rithms is that association techniques are not reliable if
certain conditions are not fulfilled or computationally
prohibitive if the matrix dimension is not small due to
combinatorial search. In Ref. [ 1], the algebraically
coupled matrix pencil (ACMP) method is proposed. It
computes the Schur form of the first matrix whose
Schur vectors are used in the triangularization of other
matrices. The simultaneous Schur decomposition algo-
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rithm cannot handle the case when close eigenvalues
of the first matrix are perturbed by amounts which are
not small with respect to their mutual distances. A
similar strategy based on eigenvectors of one matrix'”’
suffers the same problem.

Then it is sensible to handle the matrices simulta-
neously. Moreover, such a strategy will also benefit
from the averaging effect if noise is present. In Ref.
[3], a Jacobi-type algorithm tries to find the simulta-
neous Schur form of the matrices to be estimated by
orthogonal similarity transformations. The simultane-
ous Schur decomposition algorithm ( named the SSD
algorithm) is extended to the complex case in Ref.
[6]. Similar to the one-matrix case'’ "',
converge only linearly or does not converge at all, this
type of scheme suffers the same convergence difficul-
ty as is shown in section 4. The algorithm in Ref. [9]
tries to generalize the classical QR algorithm'"” to ob-
tain the simultaneous Schur form by the simultaneous
QR decomposition. However, unlike its one-matrix
counterpart which is easily incorporated with accelera-
tion strategies, this generalization loses essential prop-
erties for the one-matrix case and may result in a very

which may

slow convergence rate (if convergence occurs) .
Another problem with the simultaneous Schur de-
composition is that it may not correspond to a simulta-
neous eigenstructure; i. e., upper triangular matrices
may not share the same set of eigenvectors. Hence, in
the noisy case, even the cost function defined by the
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Euclidean norm of the below diagonal elements is
minimized. This does not correspond a minimum least
squares distance to the simultaneous eigenstructure.
Thus the performance seems unpredictable and is hard
to analyze.

In this paper, we propose a procedure revealing
the joint eigenstructure by simultaneous diagonaliza-
tion (the term “simultaneous diagonalization” is often
used in the literature to denote the diagonalization of a
set of matrices by congruence transformations'''.
Here, we use the term in the sense of simultaneous
similarity diagonalization) of .7 with the SSD and
balance procedure alternately for performance consid-
erations and also for overcoming the convergence dif-
ficulties of previous methods based only on the simul-
taneous Schur form and unitary transformations. The
procedure alternately optimizes two cost functions.
One is the norm of .7, partly following the idea of
Ref. [12] for the one-matrix case and is used to bring
% closer to normality. The other is the norm of the
left-lower part of .7, following the idea of Ref. [3]
and is used for eigenvalue revealing. The key observa-
tion is that the two optimization sub-procedures can be
well incorporated with each other in a pingpong man-
ner, i. e., each optimizes a cost function and at the
same time serves as an acceleration procedure for the
other. The diagonalization of .Z is due to the fact that
if a Schur form is balanced, it must be a diagonal
form. We prove that the two cost functions are both
convergent under mild assumptions. The balanced-
SSD algorithm is provided as an alternative to the re-
cently proposed shear-rotation algorithm'"'.

1 Problem Formation

Consider a set .2 ={A, |n=1,2, ..., N} of N
complex or real M x M matrices. When the matrices in
% are diagonalizable commuting matrices, then .2
can be simultaneously diagonalized''"’. Hence, there
is a matrix P such that

A, =PAP" n=1,2,..,N (D)
where A, is a diagonal matrix containing the eigenval-
ues of A,. We are interested in A, and their associa-
tions; 1i. e., which eigenvalues correspond to the same
simultaneous eigenvector.

In practice, .Z is corrupted by estimation errors
due to noise and finite sample size effects. Then the
off-diagonal elements can only be minimized but can-
not generally be driven to zero by similarity transfor-
mations. The average eigenstructure corresponds only
to an approximate simultaneous diagonalization. To
gain insight into this average eigenstructure, we sup-

pose that there are no identical joint eigenvalues (i.
e, Vi,,L(1<i,#i,<M), k(1 <k<N), such that
Aiip 7 Ay » Where Ay, ) and Ay, are the i,-th and
i,-th eigenvalue of A, respectively) which is a case of
significant practical importance. Taking the linear
terms of the eigenvalue estimation error AA ,, see Ref.
[2], we can express the estimation error of the i-th ei-
genvalue of A, as

ANy =q; A, t, (2)
where ¢, and ¢, are the simultaneous left and right eig-
respectively. Eq. (2)
shows that the dominant term of the estimation error
AM,; is only related to g,, t; and AA, itself, but not
related to the eigenvector error Agq, and A¢,. This rela-

envectors of error-free .7,

tion implies that the approximation to the exact mini-
mizer of the off-diagonal elements is not critical to the
estimation performance, assuming that the simultane-
ous left and right eigenvectors suffer only small per-
turbations.

In this paper, we focus on the case .7 and its ei-
genvalues are both real. Then .-Z can be simultaneous-
ly diagonalized with a real P and all the calculations
are in the real domain. The extension to the complex
case is not difficult'®"’.

2 Brief Review of the SSD Algorithm

We here present a brief introduction to the SSD
algorithm proposed in Ref. [3] and make some re-
marks on the convergence property.

Let #={A, eR"*" |n=1,2,...,N} be the set
of matrices to be simultaneously upper-trianglized and
0O be an orthogonal matrix composed of a product of
elementary Jacobi rotations

o-TITI1Ie, 3

sweeps ¢ =2 p =1

where the classical Jacobip ;otatpions 0O, are defined by
modifying the identity matrix with @,,(p, p) =0,,(q,
q) =c and O,(p,q) = -0,(q, p) =s, where ¢ =
cosf,, and s = sinf,,. The objective of the SSD algo-
rithm is to choose the rotation angle 6, at each parti-
cular step such that the following cost function (@'
=@" since @ is orthogonal)

P(O) = | A0 20) ||z =Y, | AOTA0) | ;

n=1

(4)
is decreased as much as possible, where || - ||; de-
notes the Euclidean norm and 4( +) denotes an opera-
tor that extracts the strictly lower triangular part of its
matrix-valued argument by setting the upper triangular
part and the elements on the main diagonal to zero.
The optimal §,, can be chosen by solving a fourth-or-
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der polynomial equation as derived in Ref. [3].

Ref. [7] gives a detailed example showing that
convergence difficulty arises for this kind of strategy
when the norm of the upper-right part is considerably
larger than the norm of lower-left part. The large un-
balanced norm results in a very small feasible rotation
angle of §,, at each step and makes this piecemeal op-
timization strategy difficult to converge.

Suppose that A, has a large deviation from nor-
mality, by the measure of deviation from normality of
Ref. [16],

Ac(A) =LA - 1A 12 (5)
is a large value. Then as the algorithm converges to a
certain stage, the lower-left and diagonal part of A, are
relatively near to zero and A,, respectively. Since the
SSD algorithm does not change | A, || ., by Eq. (5)
we must have a large norm on the upper-right part of
A, . Thus the convergence difficulty arises. This obser-
vation makes us to resort to a norm reducing proce-
dure which serves as the basic idea for the next sec-
tion.

3 Balanced SSD

3.1 Balance procedure

The balancing algorithm described here is an ex-
tension of Ref. [15] to multiple matrices in order to
serve for the balanced-SSD algorithm. The balancing
algorithm iteratively looks for a diagonal matrix D
such that the Euclidean norm of the m-th row of
D~'.7D is nearly equal to that of the m-th column,

where 1 <m <M. The pseudo-code is shown as
(.%, D) =Balance(.7)
@ DI
Q Bt
® repeat
@ form=1toM

1
-2 (m ) e\ ?

5 Femi)

® B, m)y«—B'(:,m)f

@ LB(m, )L (m,:)/f

® D(m, m)—D(m, m)f

9 endfor

@0 until entries of D do not change much in an iteration

where. %7 and .Z each denote a set of N matrices and

|2 Cm) N = X 1B, (m) e (6)

with the prime indicates the omission of diagonal ele-
ments. The handling of the zero denominator is the
same as Ref. [15].
3.2 Balanced SSD algorithm

Now we can construct the balanced-SSD algo-
rithm. Considering the effect of the SSD algorithm af-

ter one sweep, we tend to have a larger norm of the
upper-right part of .-Z and a smaller norm of the low-
er-left part as shown in Fig. 1 (a). In Ref. [15], the
author proved that balancing in the Euclidean norm is
equivalent to minimizing the Euclidean norm and it is
easy to verify that the larger f (line (3 in the pseudo-
code of balance), the larger reduction of || .7

g Will
be achieved. Examine the coefficient f for m =1, by
Fig. 1(a) we find that f * is the quotient of the norm
of larger elements divided by the norm of smaller ele-
ments. This makes the balance procedure work effec-
tively and .% is closer to normality since the norm of
% is reduced. Then examining f for m =2, 3, ..., M,
see Fig. 1(b), it is easily shown that the balance pro-
cedure also tends to be accelerated with the structure
obtained by the SSD procedure. On the other hand, af-
ter the balance procedure, since we have balanced ele-
ments on the off-diagonal as shown in Fig. 1(c), the
convergence difficulty caused by small feasible rota-
tion angles due to the large unbalanced norm of the
upper-right and lower-left part is also solved. Then the
SSD procedure works more like the normal case'"”
which has a good convergence property. Thus we have
seen that the SSD procedure can be well incorporated
with the balancing algorithm in a pingpong manner.
This observation leads to the following balanced-SSD
algorithm. For the SSD sub-procedure, there is no
constraint on the rotation angle to be “inner” or “out-
er”. We conjecture that the implied convergence prop-
erty for the nonrepetition hypothesis ( see section 1 of
Ref. [18]), which is of great importance in practical
applications, applies well to our case since . is itera-

tively brought to normality.

(.5, D) =BalSSD(.%)

@ Be— A

() repeat

€} (.4 D) =Balance(.%)

@ (.%) =SSD(.%, sweepnum)

(® until stop criterion is reached
The parameter sweepnum of the function SSD( +) de-
notes the number of sweeps to be performed and can
be set to 1 since the balance procedure is computation-

ally more efficient.

d [ I 1 d b b b d b b b
s d 1 1 b d 1 1 b d b b
s s d 1 b s d 1 b b d b
s s s d b s s d b b b d

(a) (b) (¢)
Fig.1 [Illustration for the balance procedure with M =4. (a) m
=1;(b) m =2;(c) After balance(d denotes diagonal element; / denotes
larger element; s denotes smaller element; b denotes balanced element. Note

that larger elements and smaller elements are in a probabilistic sense)
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Remark Minimization of | .Z || is used to
bring .7 closer to normality while minimization of
| A(.42) | g is for eigenvalue revealing. The two opti-
mization procedures each optimize a cost function and
at the same time serve as an acceleration procedure for
the other. Under mild assumptions, we prove that the
two cost functions are both convergent as follows:

For | .7 | g, it is monotone decreasing for the
balance procedure'”’. According to Ref. [19],
|| 7 || ¢ is lower bounded by the norm of the eigen-

values of .-Z. So the bounded monotone decreasing se-
quence || .2

¢ 1S convergent.

We make an empirical assumption that || .7 || 4
converges within finite iterations since the balance
procedure decreasing || .7
ated by the SSD procedure. Then the diagonal balan-
cing matrix will be an identity matrix after the conver-
gence of || .7 | ¢! So ultimately || %(.2) ||, will
also be a monotone decreasing sequence and thus con-
vergent since it is lower bounded by zero.

The convergence of || .7 || and || £(.4) |
implies that the two alternately optimization procedures
will not constitute a loop and || .7 || and || Z(.2) | &
can be used as stop criterion for the balanced-SSD al-
gorithm.

It should be noted that the convergence of the cost
functions does not imply the global convergence of .2
to (approximate) diagonal form. Empirically, in our
experience so far, it is observed that .Z does converge
quickly to (approximate) diagonal form due to the ef-
fective pingpong manner of the SSD and the balance
procedure, and we know that if a Schur form is bal-
anced it must be a diagonal form. However, we have
not been able to give a rigorous proof of this property.

¢ 1s iteratively acceler-

4 Simulation

We conduct our simulation in the scenario of a
multidimensional harmonic retrieval application based
on the multidimensional ESPRIT algorithm. The data
model of Ref. [3] is applied where the signal s, is as-
sumed to be the white Gaussian process and is uncor-
related with each other. A 2-D uniform rectangular ar-
ray (URA) with 6 x6 elements is used. Four harmon-
ic components are set as g, = w[0.30,0.27]", u, =
w[0.32,0.24] ", u; =7[0.34,0.30]", u, = w[0. 36,
0.27]". The number of snapshots is 512. SNR is de-
fined as per source per element.2 000 trials are con-
ducted. Signal sub space estimation follows the real
processing of Ref. [3]. To avoid frequency warping
due to the Cayley transformation, the invariance
equation is solved in the complex domain (except T

algorithm'*') by transforming the estimated real signal
subspace back to complex domain with the inverse of
the real-processing unitary matrix. In the joint eigen-
structure estimation procedure, we will face two com-
plex matrices which can be diagonalized with a real
matrix P. Thus, the problem is equivalent to simulta-
neously diagonalizing four real matrices by a real P.

The plots in Figs.2 and 3 show the RMSE (with
p normalized by 77) vs. the SNR for the harmonic es-
timates of various methods at different iteration
counts. The resulting RMS errors of dimension 1 and
2 are depicted in Figs.2 and 3, respectively. It is
shown that the balanced-SSD algorithm (at each itera-
tion of the balanced-SSD algorithm, the sub-iteration
for SSD and balance are set as 1 and 5, respectively)
converges to reliable estimates within 10 iterations
where the SSD"' and the simultaneous QR algo-
rithm'” still have large RMS errors even at 100 and
500 iterations, respectively. Unlike the one-dimen-
sional case where the triangularization and diagonal-
ization based method reach the same estimates if P is
not constrained to be real, the ultimate performance of
SSD with exhausted iterations (if convergence occurs)
may be different from the balanced-SSD algorithm.
The performance difference depends on each particu-
lar parameter and both algorithms have better and
worse estimates than the other. The balanced-SSD al-
gorithm is consistent with the T algorithm'*! when the
latter works (the T algorithm may fail when gy is rela-
tively close to +7r and cannot be extended to cases of
more than two dimensions), thus allowing a closed
form performance analysis'>*"" while SSD eludes such
an analysis.

Numerous experiments are conducted while only
one case is demonstrated here. It is shown that the
convergence difficulty is severe for methods based on
unitary transformation when the harmonic components
are relatively close. This corresponds to a larger de-
parture from normality of the matrices to be esti-
mated. In a more extreme case, 20 harmonic compo-
nents are equally spaced as u, =[0,0]",u, =[0. 02,
0.02]", ...,y =[0.38,0.38] . For 20 x20 URA, 256
snapshots and infinite SNR, the balanced-SSD algo-
rithm will converge at around 40 iterations. While for
SSD convergence is not observed even at one million
iterations leaving the harmonics un-resolved.

The performance of the balanced-SSD algorithm
is comparable to the shear-rotation algorithm ( simula-
tion results are omitted here in order to make Fig. 2
and Fig. 3 discriminable) of Ref. [13] and empirically
the former appears to converge a bit faster.



Joint eigenvalue estimation by balanced simultaneous Schur decomposition 449

100 ¢
Xox
*¥ g
EE NGRS E S 3 X TSR
T30 7 i
5 "
2
2 0l
20 25 30 35 40 320 25 30 35 40
SNR/dB
(a)
100

Frvagrazsas F ot
0 F T i

5 iy

N

=

wn

210!

3% 25 30 35 20 4% 25 30 35 40
SNR/dB SNR/dB
(¢) (d)

T algorithm; -~ % - Simultaneous QR at 500 iterations; ---+ -- Balanced-SSD at 10 iterations;
---% -- SSD at 100 iterations; - ------ Ultimate performance of SSD
Fig.2 Performance comparison for dimension 1. (a) Source 1;(b) Source 2; (c) Source 3; (d) Source 4

300

X X- K.
XX s X X X% ke yee X oy X ae X=X

20 25 30 35 40 20 25 30 35 40

20 25 30 35 40 420 25 30 35 40
SNR/dB SNR/dB
(¢) (d)

T algorithm; - % - Simultaneous QR at 500 iterations; ---+ - - Balanced-SSD at 10 iterations;
---% -- SSD at 100 iterations; ---»--- Ultimate performance of SSD

Fig.3 Performance comparison for dimension 2. (a) Source 1; (b) Source 2; (¢) Source 3; (d) Source 4

good convergence property while computations cost
per iteration increases only slightly since the computa-

We have proposed a simultaneous diagonalization tions of the balance procedure is proportional to
algorithm to estimate the joint eigenvalues of non-de- O(M*) per matrix. And the performance is consistent
fective matrices. The advantage of this algorithm is its with theoretical analysis. Numerical experiments sug-

5 Conclusion
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gest that the method presented here converges consid-
erably faster than the methods based on only unitary
transformation for matrices which are not near to nor-

mality.
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