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RBF-based cluster-head selection for wireless sensor networks
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Abstract: The radial basis function (RBF), a kind of neural networks algorithm, is adopted to select cluster-
heads. It has many advantages such as simple parallel distributed computation, distributed storage, and fast
learning. Four factors related to a node becoming a cluster-head are drawn by analysis, which are energy (energy
available in each node), number (the number of neighboring nodes), centrality (a value to classify the nodes
based on the proximity how central the node is to the cluster), and location (the distance between the base
station and the node) . The factors are as input variables of neural networks and the output variable is suitability
that is the degree of a node becoming a cluster head. A group of cluster-heads are selected according to the size
of network. Then the base station broadcasts a message containing the list of cluster-heads’ IDs to all nodes.
After that, each cluster-head announces its new status to all its neighbors and sets up a new cluster. If a node
around it receives the message, it registers itself to be a member of the cluster. After identifying all the
members, the cluster-head manages them and carries out data aggregation in each cluster. Thus data flowing in
the network decreases and energy consumption of nodes decreases accordingly. Experimental results show that,
compared with other algorithms, the proposed algorithm can significantly increase the lifetime of the sensor

network.
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Wireless sensor networks ( WSNs) consist of nu-
merous microsensor nodes that can be connected via a
wireless network. WSNs represent a new paradigm for
extracting data from the environment and enable the re-
liable monitoring for a variety of environments for ap-
plications that include precision farming, surveillance,
machine failure diagnosis, and chemical/biological de-
tection'' ™. The WSNs have typical characteristics such
as limited power, memory and computational capabili-
ties. The lifetime of a sensor field is mainly determined
by the nodes battery lifetime. Therefore, the lifetime of
a sensor field is influenced by the usage pattern of the
nodes batteries. So the energy supply of the sensor
nodes is one of the main constraints in the design of
this type of network!”'. However, reducing data flow-
ing over the network is an effective way of decreasing
node power consumption. So in the procedure of col-
lecting and transmitting information, in-network pro-
cessing is made as much as possible. Data aggregation
and in-network processing techniques have been inves-
tigated recently as efficient approaches to achieve sig-
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nificant energy savings in WSNs by combing data
coming from different sensor nodes at some aggrega-
tion points, eliminating redundancy, and minimizing the
number of transmissions before forwarding data to the
base station” ™.

We compare our approach with a previously pro-
posed popular cluster-head selection technique called
low energy adaptive cluster hierarchy (LEACH)'* on
the aspects of load balance ability and network life-
time. Simulation results show that the performance of

the system is improved.
1 Related Work

Routing protocols for sensor networks can be di-
vided into two kinds: address-centric protocol ( Each
source independently sends data along the shortest path
to sink) and data-centric protocol (The sources send
data to the sink, but routing nodes can look at the con-
tent of the data and perform aggregation on multiple
input packets)''’. Data aggregation aims at data-centric
protocols, which have been forward as an essential par-
adigm for wireless routing in sensor networks"” . The
idea is to combine the data coming form different
sources to eliminate redundancy, minimize the number
of transmissions and thus save energy. However, selec-
tion of cluster-head is the key to data aggregation.

A number of cluster-head selection methods for
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data aggregation in WSNs have been developed. One of
the popular cluster-head selection techniques is called
LEACH'. There are several disadvantages for selec-
ting the cluster-head by this method using only local
information in the nodes such as the two selected clus-
ter-heads probably in close vicinity of each other in-
creasing the overall energy depleted in the network,
and probably the selected node located near the edge of
the network'”. The directed diffusion method sets up
gradients to collect data wusing some reinforced
paths”' . In Ref. [6], each node calculates its distance
to the area centroid, which recommends nodes closing
to the area centroid and not the nodes that are central
to a particular cluster. Thus when data is transmitted to
the selected node, it leads to a higher overall energy
consumption. Cluster-head selection using fuzzy logic
for WSNs is proposed in Ref. [3]. This method re-
quires all the categories be listed and stored in memory
beforehand.

In this paper, we propose a fault-tolerant, distribu-
ted, energy-efficient data aggregation algorithm based
on neural networks. The use of neural networks has the
following advantages. First, once the structure and con-
nection weights of the neural networks are known, the
decision of being cluster-head is made in real time.
Secondly, noise and sensors disturbance are less sensi-
tive to the neural network, and can be easily filtered.
Thirdly, the network delays are easily handled by ro-
bust neural networks so that the cluster heads are easily
selected and the data aggregation is implemented by
the selected cluster heads. Consequently, the lifetime of
WSNs is increased by the reduction of data flow via
data aggregation.

2 System Model

Consider a WSN with a base station and many
homogeneous and energy-constrained sensor nodes ran-
domly deployed in the sensor field. All the nodes are
equipped with a low-power global positioning system
(GPS) receiver. We assume that each node is connect-
ed to the network within its maximum power. We also
assume that omni-directional antennas are used.

In our approach the cluster-heads are dynamically
selected by the base station in each round based on
four factors: their locations, their energy levels, the
number of neighboring nodes and their proximity to the
cluster heads.

During the initial network setup phase, each node
floods its location information and energy level to the
base station. The base station puts the acquired infor-

mation into the trained neural network, to produce, for
each node, a value on which the decision of being a
cluster-head is based. The architecture of WSNs is
shown in Fig. 1.

Base station

Cluster head
>

Fig.1 Architecture of WSNs

In our opinion a central control algorithm in the
base station will produce better cluster-heads since the
base station has the global knowledge about the net-
work. Moreover, base station has sufficient power,
memory and storage. As mentioned earlier, we assume
that the nodes are fixed, thus sending the location in-
formation during the initial setup phase is sufficient. So
in this way energy consumption is little, which is spent
to transmit location information of all the nodes to the
base station.

The radio model we use is similar to Ref. [4] with
E,.. =50 nJ/bit as the energy dissipated by the trans-
=100 pJ/(bit-m’) as the energy
dissipation of the transmission amplifier.

ceiver circuit and ¢,
The energy expended during transmission and re-
ception for a k-bit message to a distance d between the
transmitter and the receiver node is given by
Eqp (k,d) =E .k + & kd" (1)
Ex (k) =E .k (2)
where A =2 is the path loss exponent.

elec

We use the access model used in Ref. [4]. Assum-
ing r is the reception range of a node. If the distance
between node / and m is not greater than r, and

d,,<r (3)
the transmission is successful.

I,m

If the distance between nodes n and m is greater
than r, and

d,,>r (4)

here we consider relay transmission. And the transmis-

sion is also successful. In our model, the channel cont-

ention is not considered.
3 Radial Basis Function (RBF) Network

Several models of artificial neural networks have
been proposed such as the multi-layer perception
(MLP), self-organizing maps ( SOMs), the adaptive
resonance theory ( ART), and the radial basis function
(RBF). We choose the RBF for high mapping accuracy
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and efficiency.

Fig. 2 shows an RBF network with an input layer,
a hidden layer, and an output layer. The transfer func-
tion of RBF (f,( -+ ) and f,( - )) is Gauss function. In
this paper, RBF is adopted for the hidden layer, but in
the output layer a linear function (E,( - )) is used. So
the relation between input vector X and output vector Y

. 7
is expressed as'”

N D o2
(5)
where W, is the weight vector. The weights are deter-
mined from a set of examples through the training
process. The training samples are the set of inputs
x(t), which corresponds to the desired outputs y(?).
We specify the training set by
Z" ={[x(),y(H],t=1,2,...,N} (6)
The objective of training is to determine a mapping
from the set of training data to the set of possible
weights
AR (7)
So that the network will produce predictions y(¢) as
“close” to the true outputs y(f) as possible.

Fig.2 Structure of RBF network

In this paper, the components of input vector x(7)
= [ energy, number, centrality, location] and output
vector y(t) = [ probability] have the following mean-
ings.

e Energy is the energy available in each node. The
more energy a node has, the higher probability it can
become a cluster-head.

e Number is the number of neighboring nodes.

e Centrality is a value which classifies the nodes
based on how central the node is to the cluster. To find
the node centrality, the base station selects each node
and calculates the sum of the squared distances of other
nodes from the selected node'.

e Location is the distance between the base station
and the node. The closer the distance, the higher proba-
bility it becomes a cluster-head.

e Probability is the neural network output value be-
tween 0 and 1 for selecting cluster-heads.

To train the network, we get 50 samples from
Ref. [3] and use Eq. (5) to get the weights of the win-
ning neurons iteratively. The scheme of network learn-
ing is shown in Fig.3.

Neural Output value

networks

W=W+AW

Fig.3 Scheme of network

Objective value
—————

The weight of the winning neuron is updated ac-
cording to a simple learning rule'”

1
WOk +1) = X 8
R TR T

where M,(k) is the number of X, included in (2, (%),
£,(k) is the set of all X, satisfying
| X =W (R || < || X, =W, (K) ||

Vj#i
(9)
After the network is trained, it can be used to de-

cide cluster-heads. We can also use the trained weight

vector W to carry out network off-line learning.

Once cluster heads are elected, the base station
broadcasts a message containing the list of cluster-
heads’ IDs to all the nodes. After that, each cluster-
head announces its new status to all its neighbors. If a
node around it receives the message, it registers itself to
be a member of the cluster. After identifying all the
members, the cluster-head node sets up a TDMA
schedule and announces it to its all members. The TD-
MA schedule ensures that there is no collision between
members and allows the radio components of member
nodes to sleep in turn. When cluster formation is com-
pleted, data can be transmitted.

4 Simulation Results

For simulation experiment, the reference network
consists of 115 nodes randomly distributed over an area
of 1 000 m x 1 000 m. Simulation parameters are listed
in Tab. 1. Each data point shown is the average of ten

experiments.
Tab.1 Simulation parameters
Type Parameter Value
Network grid From (0,0) to (1000, 1000)
Network .
Base station At (50, 175)
Data packet size/byte 100
L. Broadcast packet size/byte 25
Application X
Packet header size/byte 25
Round/ frame 5

In the first phase of the simulation nodes are as-
signed random energy levels between 0 and 100. The
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base station counts the number of neighbors for each
node using a radius of 30 m. Variable number belongs

to [0,10]. And variable centrality is » d’(i) (i =0,1,

..., 10), and the maximum value of dz(i) =30%, but
d(0) =0. So variable centrality is between [0, 9 000].

Variable location belongs to [0, 1 000/5 ], and the out-
put value is between 0 and 1. In order to easily express
the relationship among four variables and output, the
variable centrality value belonging to [0, 9 000] is
mapped to [0, 100]. Fig.4 shows the system error as a
function of training time using the RBF, where the sys-
tem error is the subtraction between output and the true
value. It indicates that when the training epoch’s num-
ber is about 170, the system error reaches the steady
value 0. 003 2. Therefore, from this figure we can ob-
tain the result that RBF network has fast training speed
and good performance.
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Fig.4 Relation between error and training epochs using RBF

In order to assess our approach, we compare it
with LEACH on load balance ability and network life-
time. The simulation conditions are the same as above.
Standard variation of the number of nodes of each clus-
ter of RBF and LEACH respectively is simulated by
cluster radius varying from 50 to 500 m. Fig. 5 shows
that the RBF standard variation is lower than that of
LEACH and hence can offer better load balancing.

45
4 —— —LEACH 4
35+ ——— RBF /

30 e

25 Ve

20 /

15+
10
5 .

Standard variation
AN

0 1 1 1 1 1
0 100

1 1 1
200 300 400 500
Cluster radius/m
Fig.5 Standard variation of the number of nodes of each cluster

In the following we compare network lifetime of
RBF and LEACH. We assume that a node is dead
when it has consumed 99% of initial energy, and that

network lifetime is the number of rounds until the last
node is dead. In the LEACH protocol, we obtain

. [ E(D)
P. = TS 10
l(t) mln{Emtal(t) k, 1 } ( )
and
Etulal(t) = ZEI(Z) (11)
i=1

where E,(t) is the current energy of node i, P;(?) is
the probability of node i chosen to be a cluster head, k
is the number of cluster heads. According to Ref. [4],
here k = 13. We assume that the number of network
nodes varies between 100 and 500. Fig. 6 shows that
lifetime of network using the RBF is about 40% lon-
ger than that using LEACH. This probably results
from two reasons. One is that in LEACH each node
broadcasts its current energy in each round to all other
nodes in the network, thus consuming much energy,
while in the RBF, much smaller number cluster-heads
perform this task. Secondly, the total computation load
using LEACH is much heavier as nodes rather than
the base station is doing the calculation.
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Fig.6 Relation between network lifetime and number of nodes

5 Conclusion

In this paper, we present a scheme of cluster-
head election using the RBF in WSNs. According to
energy, number, centrality, location information of
each node acquired from WSNs, the RBF network is
used to select cluster-heads and, therefore, reduce da-
ta flowing in the network. Thus lifetime of WSNs is
extended. Experimental results show that this method
can select the cluster-heads quickly and significantly
increase the lifetime of the sensor network.
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