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Abstract: A numerical technique of the target-region locating (TRL) solver in conjunction with the wave-front

method is presented for the application of the finite element method ( FEM) for 3-D electromagnetic

computation. First, the principle of TRL technique is described. Then, the availability of TRL solver for non-

linear application is particularly discussed demonstrating that this solver can be easily used while still remaining

great efficiency. The implementation on how to apply this technique in FEM based on magnetic vector potential

(MVP) is also introduced. Finally, a numerical example of 3-D magnetostatic modeling using the TRL solver

and FEMLAB is given. It shows that a huge computer resource can be saved by employing the new solver.
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1 Principle of Target-Region Locating (TRL)
Method

1.1 Wave-front principle

Because of the flexibility of finite element pro-
cessing and easy implementation in optimizing large-
scale equation solutions, the wave-front ( W-F) meth-
od is selected and studied in our research for the rea-
son that there will be no cumbersome convergent solu-
tion problems. The W-F method is a special direct
method, or called a special Gauss elimination meth-
od"™ . Different from regular Gauss method, the W-F
method carries the job of loading an element matrix
into a global stiffness matrix, eliminating element node
variables out of the matrix, and storing equation coef-
ficients of the eliminated variables in a dynamic way.
It is known that for the usual direct Gauss method,
usually, at first, all the finite element equations are
processed and loaded into a general matrix one by one
to finalize a global or general stiffness matrix equa-
tion. Then the Gauss elimination processing is done
for each node variable according to the sequence order
in the stiffness matrix and the elimination coefficients
are stored in a one-dimensional array. Finally back-
substitution is done to solve all node variables in the
whole field region. Because in this regular Gauss
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method all node variables have to be stored in a global
matrix which may generate a huge memory require-
ment and also cost a huge amount of calculating
work, thus it is not an efficient solver for large-scale
FEM especially for 3-D electromagnetic analysis. But
when utilizing the W-F method, a dynamic stiffness
matrix defined as a “front matrix” instead of a global
stiffness matrix is adopted, which means that when
one element equation is processed and loaded into this
“front matrix” and, meantime, if some of node varia-
bles are judged to be the last in the loading process or
saying they are judged to be last in this “front”, then
they are eliminated out of the “front” because they are
no longer in use and will not make any contributions
to next new-inputting element node variables. Also,
their elimination coefficients should be stored at this
time. In this way, only limited node variables exist in
the “front matrix” in FEM process during the time
when some new elements being loaded into “front”
and some old element variables being eliminated out
of “front”. Since this phenomenon looks like a wave
moving-forward, it is called the wave-front method
and the size of “front matrix”defined as front width is
changeable in equations processing.
1.2 Target-region locating method

Though the W-F method does not need to store a
general global matrix, it still has to store all the varia-
bles elimination coefficients in a one-dimensional ar-
ray during the W-F process, and if it is for a large
field analysis problem, this will surely require another
huge memory size for storing elimination coefficients.
For this reason, the target-region locating technique is



Finite element solution based on fast numerical technique for large-scale electromagnetic ... 471

presented in conjunction with the W-F method. The i-
dea is that usually in field analysis only a small part of
the field region named as the target-region or solving
region needs to be known and it often occupies a very
small percentage of the total space, say for example
5% . So actually we just need to solve these target-re-
gion unknowns and do not need to solve all others.
This implies that in modifying the W-F method, it is
only necessary to store those coefficients of the target-
region variables and abandon the storing of all other
variables in non-target-regions. Consequently, before
numerical computation begins, all target-regions have
to be located in advance and their involved elements
are to be renumbered so as to be loaded in the “front”
as late as possible while ensuring that non-target-re-
gion elements are loaded in the “front” as early as
possible. Then in the computation, non-target-region
elements will be dealt with first and eliminated out of
“front” without storing their elimination coefficients,
and the target-region elements will be inputted and
their coefficients will be stored in a 1-D array which
will be solved by back-substitution. Therefore, by em-
ploying the TRL technique, it not only avoids storing
all the elimination coefficients resulting in a huge
memory saved, but also keeps the bandwidth of
“front” (or front width) to a very small size. This
may be explained by, on one hand, the target-region
elements are loaded into “front” and thus they are not
encircled or combined together with widely-located
non-target-region elements in the “front matrix”. On
the other hand, it is ruled that in the element loading
process of FEM, any target-region element cannot be
eliminated until all the elements of target-regions have
been inputted and, therefore, finally, only those vari-
ables of target-regions are left in “front” and they can
then be eliminated and stored together. As a result the
target-region variables will not stay in “front” for a
long time and also will not occupy any additional
space in “front”, so front width is kept small.

The following is the analysis of the TRL solver
in conjunction with the W-F method. As shown in
Fig. 1, assume that T,, T, are target-regions, and {2 is
a regular region or non-target-region. S,, S, are joint
surfaces between target regions and non-target-regions
(T,,T,/€0). Then at first, regular region elements 2
are loaded into “front”, and the W-F matrix equation
is

K, ,X,=F, (1)

During the time of element loading into “front”,
the element node variables within the regular region
are eliminated at the same time because they are in the

Ty, T,: target-region;

£2 :regular region;

81,82 : Joint surface between
target-region and
non-target-region

Fig.1 [Illustration of TRL technique for solver

last appearance in “front” and will be no use and only

those variables of S,, S, on the joint surface are left in

the “front”. Then Eq. (1) becomes
[KSI,SI KSI,SZ][XSI] [Fsl

(2)
Ksz,s1 KSZ,SZ st Fs2

Now the new target-region elements of 7', T, are
continuously loaded into “front” and Eq. (2) is
changed into
F,

Fy,

KT]’TI KTI’TQ:I (3)

Xry
.-

KTZ, T, KTZ, T,
where the variables S,, S, on the joint surface are al-
ready included in the target-region variables T,, T,
and thus not written in Eq. (3). Eq. (3) can be rewrit-
ten as
K, X, =F, (4)
where T is the total target-region variable. Up to now
it is obviously shown that only Eq. (4) needs to be
solved by back-substitution and the number of these
solved unknowns is reduced to only n,, which is small
enough compared with the non-target-region’s variable
number ng,. Therefore, the TRL technique obtains the
result of a great saving of memory used for storing
elimination coefficients, which, for example, may be
only less than 1% of regular W-F use, and according-
ly much CPU time can be saved.
1.3 Application of new solver in non-linear prob-
lem
When there are non-linear materials in the field
such as non-linear permeability u, of magnetic materi-
als in magnetostatic modeling, usually it is a very
time-consuming process and is also a complex and
cumbersome problem in a numerical scheme since it
needs much iteration time to have convergence solu-
tions approaching the exact solution. However in the
non-linear case, the TRL solver is also available which
still retains the advantage of great small memory use;
and one more important thing is that because it can
save calculating time in each iteration, the TRL solver
can thereby also greatly save the total calculating
time. This is readily realized if we regard the non-line-
ar region as an additional target-region and the non-
linear region variables are together solved with target-
region variables in each iteration of calculation. Final-
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ly, by judging whether the following condition of

convergence criterion

M (n) (n=1)
My~ M
(n-1)
M

— & (5)

k=1
is met or not then the convergent solution can be
achieved. In formula (5) M is the number of sub-re-
gions of non-linear permeability materials.

The non-linear analysis is given below. Assuming
that beside the exact target-region T and the regular
region 2 (non-target-region), there are two new sub-
regions of non-linear materials N, and N,. Now since
non-linear material regions N, and N, are already
treated as additional target-regions and have been lo-
cated before computation, thus, regular region 2 is
first loaded into “front” and its W-F matrix equation
is the same as Eq. (1), which is similar to the usual
TRL method. Then by eliminating non-target-region
elements out of “front”, the left variables staying in
“front” will be those on the joint surface between reg-
ular region &2 (i. e., non-target region) and equivalent
target-regions organized by exact target-region T
adding non-linear regions N, and N, together. Assum-
ing this jointed surface variable is £2_, then the front e-
quation is

Knc,nanc :Fnc (6)
Now loading the equivalent target-region elements T
(exact target-region) and N, N, ( non-linear regions)
into the “front matrix”of Eq. (6), then Eq. (6) chan-
ges into

Koo, Kor Koo, Ko Xo [Fo
Kio Kpr Kpy Ky, || X F;I 7
KNI,.QC KN],T KN[,N[ KN],NZ XN| - FZ,V]
KNZ, o KNZ, T szz,zv1 KNZ, N XN2 F 1,\’2

Considering that the joint-surface variable £2, also be-
longs to the equivalent target-regions (T,, N, N,)
and can be involved in these target-regions as done
before, then Eq. (7) is rewritten in terms of only
equivalent target-region variables (T',, N,, N,) as
KT,T KT,NI KT,NZ XT FT
KNI,T KN,,N, KNI,NZ XN1 = FN1 (8)
KNZ,T KNZ,N] XNZ FNZ

KNZ,NZ
From Eq. (8) it is clearly seen that though some

non-linear regions are added in the field region, finally

the total number of variables existing in the “front

matrix” and to be solved is just equal to

M oondinear = My + Ny, + Ny, (9)
It is often true that these non-linear regions often

still occupy a small percentage of total space. For ex-

ample, in our project research there is a non-linear

iron in a coil for magnetic field generation and the
space of non-linear iron is very small compared with
the total space, and, therefore, there should be a very
limited increase of total solving variables of the pa-

rameter n in Eq. (9), since the number of target-

non-linear
region variables, either n, or ( ny + ny +ny ), is
greatly less than the total number of field variables
(np+ny +ny, +n,). In other words, it can be said
that, compared with non-target-region variable num-
ber n,, both exact target-region variable number n,
and equivalent target-region variable number (n, +
ny, +ny,) can be ignored. So this is still a very small
calculating work just like the TRL solver application
in the linear case.

Furthermore the TRL solver is even more power-
ful in the non-linear case, because, if N is iteration
time and AT is the saved time in each iteration com-
pared to the usual Gauss direct method, then the total
saved calculating time compared to the Gauss method
is N-AT! This will represent a huge saving of time.

2 Implementation of TRL Solver in Finite
Element Method

The purpose of the electromagnetic computation
in this work is for the design of a magnet wrapped by
a DC coil for generating an appropriate magnetic field
for non-invasive detection of strut failures in the
Bjork-Shiley convexo-concave ( BSCC) prosthetic
heart valve" . This is a 3-D magnetostatic modeling
problem with exciting current source. After consider-
ing the magnetic vector potential (MVP), a finite ele-
ment is adopted'*™', and magnetic field B is derived
from solved variable A (i.e., MVP) which is

B=V xA (10)
Then the governing equation is

VXLV xA =Js (11)
72

The corresponding finite element formula by the
Galerkin’s weighted residual method is obtained as

[N-v x 1y xAdQ = [ N - Jsd (12)
Q2. M Q2.

Using vector identities, Eq. (12) is transferred in-
to

fﬂc v xN-iV x AdQ =LCN-Jsd.()+

[N (L v xaxn)ar (3
r M
Rewriting Eq. (13) into matrix equation form,

the element matrix equation is
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e e
KAx, Ax KAx, Ay

K:x,AZ Ax F Ax
KZy,Ax KZy,Ay KZy,Az Ay = FAy (143)
K:z,Ax KZz,Ay KZz,Az e Az e FAZ e
or

K; X, =F, (14b)
which is a 24 x 24-dimensional matrix equation. Now
substituting Eq. (14) into Egs. (1) to (4), the TRL
solver can be easily implemented in the MVP finite

element method.
3 Numerical Example

A numerical example of 3-D magnetostatic prob-
lems is given to verify the accuracy and efficiency of
the TRL solver with the W-F technique in the applica-
tion of the FEM, and the result comparison between
the TRL solver and FEMLAB®'® indicates that the
new solver is more efficient which may be a good
candidate for use.

An iron cube with relative permeability w, =10 is
immersed in the field of a cube coil'”’. The current
density is assumed to be 1 A/mm’. Fig.2 is the illus-
tration of model geometry and its mesh generation of
iron and coil. To compare the results between the new
solver and FEMLAB®, the z-components of the flux
density along the z-axis at the center of iron are plotted
in Fig. 3. It is found from Fig. 3 that the two results
are close to each other. Moreover, these results are also
consistent with the theoretical solution in a similar

1[8]

model'™ and the error is within an acceptable range,

which again proves the validity of the TRL solver.
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Fig.2 A complex magnetostatic model for analysis (unit: m)
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Fig.3 Results comparison between FEMLAB® and the TRL solver

Tab. 1 is the comparison of used computer re-
source and other essential data between FEMLAB®
and the TRL solver. It is found that great computer re-
source can be saved by the new solver. This is be-
cause, by using the new solver, the number of solved
unknowns decreases from 38 462 to only 96, which is
only about 0.2% of the FEMLAB®. Thus both mem-
ory used and CPU time decrease to only about
0.009% and 1.7% that used by FEMLAB®! Addi-
tionally, it is shown that, the number of equations to
be processed reaches 10 584 for the TRL solver, but
the actual maximum number of equations to be pro-
cessed in “wave-front” is only 732. This means that
the relative space occupation ratio of the TRL solver
in total space is just equal to (732/10 584) x 100% =
6.9% and there is still much spare space for TRL sol-
ver use. This result comes from the fact of utilizing
the TRL solver to control the front width kept at limit-
ed small value. Moreover, it is still observed in a simi-
lar example that when the permeability is changed to
high, the CPU time of FEMLAB® may even be in-
creased to almost 60 times of original time, but the
time of the TRL solver does not change. It should be
mentioned that though the TRL solver is implemented
on a high-performance computer and FEMLAB® is on
a regular computer; however, if considering the
memory used and the maximum equation number be-
tween the TRL solver and FEMLAB® as shown in
Tab. 1, this comparison is reasonable since the calcu-
lating time is directly related to the maximum number
of equations and the memory used.

Tab.1 Comparison of used computer resource
between TRL and FEMLAB®

It TRL sol FEMLAB® Ratio (TRL/
ems solver
FEMLAB®) /%
N f
umber o 2873 28 264 10
elements
Number of 3508 . .
nodes
Number of
umber 0 10 584 38 462 28
unknowns
Number of 96 (with 7
38 462 0.2
solved unknowns solved elements)
Maxi b
aximum number 732 38 462 L9

of equations
6.7 x10* 7.25 x10% 0. 009
CPU time/s 5 287 1.7

Memory used

Up to now the conclusion can be drawn that
though FEMLAB® has the advantage of flexibility in
use for various EM problems, the fast solver proposed
in this paper is more powerful for large scale compu-
tation with small solving regions.
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