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Abstract: The phenomenon of stochastic resonance (SR) based on the correlation coefficient in a parallel array

of threshold devices is discussed. For four representative noises: the Gaussian noise, the uniform noise, the

Laplace noise and the Cauchy noise, when the signal is subthreshold, noise can improve the correlation

coefficient and SR exists. The efficacy of SR can be significantly enhanced and the maximum of the correlation

coefficient can dramatically approach to one as the number of the threshold devices in the parallel array

increases. Two theorems are presented to prove that SR has some robustness to noises in the parallel array. These

results further extend the applicability of SR in signal processing.
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Stochastic resonance (SR) is a nonlinear phenom-
enon, which describes the possibility of improvement in
signal transmission or signal processing, thanks to the
actions of noise. Most occurrences of SR involve a sig-
nal ( periodic, non-periodic or non-deterministic ),
which is mostly subthreshold and too weak to elicit a
stronger response from a single nonlinear system. Addi-
tion of noise then brings assistance to the subthreshold
signal in eliciting a stronger response from the nonlin-
ear system. SR is usually measured with signal-to-noise
ratio, mutual information, input-output correlation,
probability of detection'' ', Recently, Ref. [4] first
gave two theorems to prove that SR exists in a single
threshold neuron based on the measure of Shannon’s
mutual information. Here, we study further SR in a par-
allel array of threshold devices. The parallel array is of
interest, since it is widely used in electric engineering,
neural network and it can model many natural phenom-
ena. SR is characterized by the correlation coefficient.
Although the correlation coefficient is thought to be a
measure of linearity, it is a valid measure of how simi-
lar the output signal is to the input signal or how close-
ly the output signal matches the input signal''” . If the
correlation coefficient of two random signals approa-
ches to one, the two signals are linearly related to each
other' ™™ . This paper first discusses and simulates the

effect of SR for four representative noises in the array.
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When the signal is subthreshold, noise can improve the
correlation coefficient and SR exists. The efficacy of
SR can be enhanced significantly and the maximum of
the correlation coefficient can approach dramatically to
one as the number of the threshold devices in the array
increases. Then two general theorems are presented to
prove that SR has some robustness to noises in the par-
allel array. These results further extend the applicability
of SR in signal processing.

1 Parallel Array of Threshold Devices and
Correlation Coefficient

A parallel array consists of N threshold devices
(when N =1, the array is a single threshold system).
Each threshold device is subject to the same discrete
input random signal x € {0, 1}, but independent and
identically distributed noise n; with probability density
function (PDF) f,(x). The output y, is given by the re-
sponse function

1 x+n;>u, 1)
Yi= {0 otherwise

where u;(i =1, 2, ..., N) are the threshold levels. The
response of the parallel array is obtained by maximi-
zing the individual response of each device, i. e., y =
max{y,, ¥,, ..., Yy}

We denote the mean of a random variable x as
E(x), the variance as var(x) and the cross-correlation
of x and y as E(xy). Then the correlation coefficient
of x and y is
E(xy) - E(x)E(y)

Vv var(x) o/ var(y)

p(x,y) = (2)
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Because the distribution of threshold levels has
little effect on the system performance, we can as-
sume, as in Ref. [ 16], that all thresholds share the
same value u;, = u in the parallel array. Now we as-
sume P(x=0) =p,, P(x=1) =p, =1 - p,, then

E(x) =p,, var(x) =p,p,

E(y) =1 —pOPN(n <u) —plPN(n <u-1)

2
var(y) =~ [ 3 PP (n <) =p, P (n <u=1)]
E(xy) =p,[1 -P’(n<u-1)]

The correlation coefficient p(x, y) in Eq. (2) be-
comes
p(x,y) =
pll=P'(n<u-1]-p,[1 -pP'(n<u) -p,P(n<u-1] _

vpopl\/%_ [%—POPN(Y! <u) —])]PN(n <u—1)]

/PP [P (n<u) —PY(n<u-1)]
VPP (n<u) +p, PY(n<u-DI[1 -p,P"(n <u) —p,P*(n<u-1)]

(3)

Given a noise PDF, we can derive P(n <u) and

P(n <u —1) and then discuss the variation of p(x,
».

2  Examples of SR in Parallel Array of
Threshold Devices

In this section, we discuss and simulate the phe-
nomenon of SR in the parallel array for four repre-
sentative noises: the Gaussian noise ( thin-tailed
PDF), the uniform noise ( finite support PDF), the
Laplace noise ( heavy-tailed PDF) and the Cauchy
noise (impulsive noise without mean and variance) .

1) Gaussian noise The Gaussian PDF with zero

. 2
mean and variance ¢~ has the form
2

£ = e - 25)

then
P(n <u) =%+%erf(2ia) (4)
-1
P(n<u—1)=%+%erf(;§o_) (5)

The uniform PDF with zero
mean and variance ¢ has the form

I /e _ /2o
£(2) =[ma 2 2

0 otherwise

2) Uniform noise

then

P(n<u-1) = (7)

/3
The Laplace PDF with zero
mean and variance ¢ has the form

fx
g

3) Laplace noise

£.(2) =ﬁ1exp( -

g
then
P(n<u) =1—%exp( _m) (8)
g
P(n<u-1) =1 —%exp( —@) (9)

4) Cauchy noise The Cauchy PDF with zero

location and finite dispersion 3 has the form

fi(x) =

r( X+ 'yz)
then

P(n<u) = % + ];arctan % (10)

u-1

P(n<u-1) =%+Larctan
iy

(11)

For p, =p, =1/2, Figs. 1 and 2 give the theoreti-
cal results of Eq. (3) and the Monte Carlo computer
simulations (discrete data points) for four representa-
tive noises. In the single threshold system, when the
signal is subthreshold (u > 1), Fig. 1 shows a non-
monotonic variation, p(x,y) increases with the noise
intensity (standard deviation ¢ or standard dispersion
), up to the maximum where the noise intensity is
optimal, and then decreases. This non-monotonic in-
fluence of the noise on p(x,y) is the signature of SR.
For a fixed threshold u =1. 2, Fig. 2 shows that the ef-
ficacy of SR can be enhanced significantly and the
maximum of p(x, y) can approach dramatically to one
as the number of the threshold devices in the parallel
array increases. It seems that when different threshold
noises are independently added on the devices of the
array, each device will in general produce a distinct
response. When all these responses are collected over
the array, it is shown that the optimal response in the
array can be more efficient than the response in a sin-
gle threshold system.
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Fig.1 Correlation coefficient p(x,y) for different thresholds in the single threshold system and different noises. (a) Gaussian noise; (b)

Uniform noise; (c) Laplace noise; (d) Cauchy noise
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Fig.2 Correlation coefficient p(x,y) for different threshold numbers in the parallel array and different noises. (a) Gaussian noise;

(b) Uniform noise; (¢) Laplace noise; (d) Cauchy noise

3 Proof of SR in Parallel Array of Thresh-
old Devices
We now give a theorem to prove that almost all

the finite-variance densities produce SR in the parallel
array with subthreshold input signal. The theorem

shows that if p(x, y) >0 then eventually the correla-
tion coefficient p(x, y) tends toward zero as the noise
variance tends toward zero. So the correlation coeffi-
cient p(x, y) must increase as the noise variance in-
creases from zero. The only limiting assumption is that
the noise PDF f,(x) is an even function with respect
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to the mean E(n) and the noise mean E(n) is less
than u — 1.

Theorem 1 Suppose that the noise PDF f, (x)
is even function with respect to the mean m = E(n)
and that the input signal is subthreshold (u <1). Sup-
pose that there is some statistical dependence between
the input signal x and the output signal y (i.e., p(x,
y) >0). Suppose that the noise mean E(n) is less than
u —1if f,(x) has a finite variance ¢” = E[ (x - m)’].
Then the array exhibits the non-monotone SR effect in
the sense that p(x, y) —0 as ¢—0.

Proof Considering that the noise PDF f,(x) is
an even function with respect to the mean E(n) and
the noise mean E(n) is less than u —1, we have

%:P(n<m) sP(n<u-1)<sP(n<u) <l

(12)
Then Eq. (3) implies that
M[PN(n<u) —PN(n<u—1)]$
«/1 -poPN(n<u) —p,P'(n<u-1)
V2'pop, [1 =P (n<u-1) +1-P'(n<u)] _
Jrol =P (n<u)] +p, (1 -P (n<u-1)]
V21 =P (n<u)] + /21 =P (n<u-1)]
(13)
The result now follows if P(n<u — 1) —1 and

P(n<u)—1 as 0—0,1.e., p(x,y)—0 as 0—0. Now
we pick e =u —1 —m >0, then

p(x,y) <

Izp(n<u)=zp(n<u-1) =P(n-m<g) =

l-P(n-m=¢g)=1-P(|ln-m|=¢) =1 —Z—j

(14)

The last inequality in Eq. (14) is according to the
Chebyshev inequality. So we have P(n <u —1)—1 and
P(n <u)—1 as 0—0, thus p(x, y)—0 as ¢—0.

Like in Ref. [4], we now proceed to the more
general (and more realistic) case where infinite-vari-
ance noise interferes with the parallel array. Many
types of impulsive noise are modeled with symmetric
(about a) alpha-stable bell-curve probability density
functions with parameter « in the characteristic func-
tion ¢(w) =exp{iaw —vy |w|*}, here v is the standard
dispersion parameter and a is the location parameter.

Theorem 2 Suppose that p(x, y) >0 and the
parallel array uses symmetric alpha-stable noise with
the location parameter a. Suppose that a is less than u
— 1. Then the array exhibits the non-monotone SR
effect if the input signal is subthreshold.

Proof Considering that the noise is symmetric
alpha-stable noise with location parameter a and a is
less than u — 1, we also have

%:P(n<a) <P(n<u-1)sP(n<u) <l (15)

Then Eq. (3) also implies that

V2P [P (n <u) =P'(n <u —1)] _
poll =P'(n <w] +p[1 =P'(n <u -1)] h

p(x,y) <

2ppi L =P'(n <w] +[1 -P'(n <u -DI} |
pll =P'(n <w)] +p,[1 =P'(n <u -1)]
VP'(n <uw) -P'(n <u-1) <
N[P(n <u) —P(n <u -1)] < «/AQN{‘[” f“(x)dx}T

(16)
According to liilggo(w) =exp(iaw), the Fourier
Y

transformation gives the corresponding density func-
tion in the limiting case (y—0) as a translated delta

function lim f,(x) =&(x - a), then lim f fi(x)dx =
y—0 y—0J 1

u

f 8(x —a)dx =0, because a is less than u — 1. So
u-—1

we have p(x, y) —0 as y—0.

Noise affects the nonlinear system in a complex
way. The proposed two theorems do not guarantee that
the predicted increase in the correlation coefficient
will be significant and do not especially guarantee that
the maximum of the correlation coefficient can ap-
proach to one. But, they guarantee that many kinds of
noises produce SR in the parallel array when the input
signal is subthreshold, SR shows some robustness to
noises in the array.
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