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Abstract: The problem of pattern-based subspace clustering, a special type of subspace clustering that uses

pattern similarity as a measure of similarity, is studied. Unlike most traditional clustering algorithms that group

the close values of objects in all the dimensions or a set of dimensions, clustering by pattern similarity shows an

interesting pattern, where objects exhibit a coherent pattern of rise and fall in subspaces. A novel approach,

named EMaPle to mine the maximal pattern-based subspace clusters, is designed. The EMaPle searches clusters

only in the attribute enumeration spaces which are relatively few compared to the large number of row

combinations in the typical datasets, and it exploits novel pruning techniques. EMaPle can find the clusters

satisfying coherent constraints, size constraints and sign constraints neglected in MaPle. Both synthetic data sets

and real data sets are used to evaluate EMaPle and demonstrate that it is more effective and scalable than

MaPle.
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Cluster analysis seeks to make similar objects
gather in the same cluster. The similarity between ob-
jects is often determined by distance measures over
the full dimensions in the dataset, such as Euclidean
distance, Manhattan distance, or cosine distance'".
Since, in many applications, objects are expected to
be correlated only under certain dimensions, subspace
clustering has gained more popularity than full space
clustering. Furthermore, clusters generated through
subspace clustering may have different feature spaces.

The distance functions widely used in clustering
are not always proper in capturing correlations among
objects, because sometimes objects do not have ap-
proximate values even though strong correlations may
still exist, while pattern similarity can capture the gen-
eral tendencies of objects among subspaces in a high
dimensional space. Therefore, a novel model, called
Biclustering'”', based on pattern similarity was first
proposed to solve this problem. In this paper, we ex-
plore a more effective and scalable approach to mine
pattern-based subspace clusters.

In many applications, users are more interested in
the objects that exhibit a consistent trend within the
subset of dimensions, such as DNA microarray data
analysis, automatic recommendation systems and tar-
get marketing systems. As a concrete example, in gene
expression profiles analysis, it is particularly useful to
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identify the genes having similar trends across a set of
conditions since the expression levels of some genes
may be inflated or deflated systematically under some
experiments. Thus, the absolute value is not as impor-
tant as the trend. Such information is crucial in
revealing the co-regulated genes in gene regulatory
networks. The main contributions of this paper are as
follows:

(D We propose a novel pattern-based subspace
clustering algorithm. For subspace clustering algo-
rithms, objects and attributes are treated symmetrical-
ly, so that either objects or attributes can be treated as
features. Typical datasets in science data and e-busi-
ness have many more objects than attributes. Thus ob-
ject-enumeration space is much larger than the attrib-
ute-enumeration space. We devise an algorithm that
only exploits the attribute-enumeration space to con-
duct depth-first search and develop techniques to
prune search subspaces.

(2 We consider the sign problem neglected in
MaPle. So our algorithm identifies clusters satisfying
coherent constraints, size constraints and sign con-
straints, which are of high biological significance.

(3 We conduct experiments to validate the effec-
tiveness of the proposed algorithm.

1 Related Work

Clustering techniques”™ often define the similar-
ity between objects using distance measures over all
dimensions. Ref. [6] presented that, for high dimen-
sional spaces, a full-dimensional distance is often irrel-
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evant, as all of the objects are nearly equidistant from
each other. Subspace clustering is a good solution for
finding clusters in such data spaces by defining simi-
larity on a selected subset of attributes for a set of ob-
jects. Several methods'” """ have been introduced to
discover interesting subspace clusters. None of the a-
bove algorithms satisfy our most important require-
ment: the ability to identify pattern similarity clusters
in subspace. Since our work is highly related to pat-
tern similarity clustering, we will describe it in more
detail.

Cheng and Church proposed biclustering, or
simultaneous clustering on both genes and conditions,
to discover knowledge from expression data. The
problem of biclustering is to mine submatrices with
low mean squared residue scores. A move-based algo-
rithm'""" is a further improvement on the biclustering
by allowing absent attribute values. The algorithms in
Refs. [2, 11] adopt greedy search strategies, and thus
may converge to a local minimum and cannot guaran-
tee to find all clusters.

pCluster'
ters. It defines another similarity measure -called

can discover the entire set of clus-

pScore, which computes the change of values on the
two attributes between the two objects. It first finds all
column-pair and object-pair maximal dimension clus-
ters called MDSs. Then it prunes object-pair MDSs
and column-pair MDSs by turns until no pruning can
be made. Finally, it inserts the remaining object-pair
MDSs into a prefix tree. MaPle'" studies the problem
of maximal pattern-based clustering. It first computes
and prunes attribute-pair MDSs and object-pair
MDSs, then progressive refining and depth-first
searching are devised for the maximal pattern-based
clustering. However, the two ways need to maintain
the set of MDSs for object-pair and attribute-pair sim-
ultaneously and thus consume a significant amount of
time and space. Search space for object enumeration
and pattern checking becomes huge when there are
many MDSs.

How to find these clusters precisely and efficient-
ly in considerable data space becomes a question wor-
thy of consideration. For this reason, this paper propo-
ses EMaPle, an effective maximal pattern-based min-
ing algorithm, which mainly aims at reducing the un-
necessary objects and sufficiently utilizing the con-
straints to compress search space. It runs faster than
the previously developed pattern-based mining algo-
rithms and decreases the magnitude of memory.

2 Problem Definitions

In this section, we introduce some important con-

cepts that will be used throughout this paper.

To formulate how coherent the objects are on at-
tributes, we introduce measure pScore.

Definition 1 (pScore)!” Let S={r,, ..., r,} be
a database with n objects. Each object has m attributes
A={a,, ..
the domain of real numbers. The value of object r; on
attribute a, is denoted as r;. a;. For any objects r,, r, e
S and any attributes a

., a,}. We assume that each attribute is in

a, € A, the pScore is defined

u’

as
( r.a, Tr. av])
pScore =
r.a, r.a,
||(rx. a,-r,.a, —(r.a, - r,. a,) H

Definition 2 ( pattern-based cluster) !"”! Let R
C S be a subset of objects in the database and D C A
be a subset of attributes. (R, D) is said a §-pCluster if
for any objects r,, r, € R and any attributes a,, a, €

r.a, r.a,

D, pScore ( [

) <§, where §=0.

wa, T.a,

Definition 3 ( maximal pCluster) ' A §-pClus-
ter C is said maximal( or called a §-MPC in short) if
there exists no §-pCluster C’ such that C is a proper
sub-cluster of C’.

A cluster with a small number of objects or a
small number of attributes may be formed by chance.
Users are not interested in these trivial and coincident
clusters. As a result, users impose the minimum size
threshold on objects and attributes.

Problem Statement Given a dataset D which
contains values of objects on attributes, our task is to
identify all MPCs with respect to a user specified
threshold ¢, and we confine the minimum size con-
straints n_( for attributes) and n,( for objects) to mine
significant clusters.

3 EMaPle Algorithm

We describe three steps of EMaPle ( effective
maximal pattern-based clustering) in this section. In
the first step, we scan the dataset to find attribute-pair
MDSs, maximal dimension sets containing only two
attributes, and we propose the sign problem and solve
it, which is introduced in section 3. 1. In the second
step, we use various pruning techniques to shrink data
space. The pruning process is presented in section
3.2. We show how to find MPCs by a depth-first trav-
ersal with pruning in an attribute subset tree in section
3.3.

3.1 Finding attribute-pair MDSs

Unlike the method used in Ref. [12], we initial-
ize end with n, — 1 instead of 1 and set start no less
than n — n, + 1. The major ideas are illustrated in ex-
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ample 1.

Example 1( finding attribute-pair MDSs)  For 6
objects and 5 attributes in Fig. 1(a) with 1 =1,n, =3,
MDS for pair a,, @, can be mined in the following
steps.

Step 1 Compute and sort the discrepancies of
the object values on attributes. Fig. 1(b) shows the re-
sult of this process.

Step 2 Run through the sorted list until discov-
ering the first MDS. The two pointers start and end are
set 0 and 2, respectively. The two values correspond-
ing are —1 and 0. Since 0 —( - 1) <1, we move end
forward until we find 2 - ( —1) >1 and end — start =
2. Then {r,, r,, r;, ry, rs} is an MDS.

Step 3 Repeat the above process until start is n
—n, — 1. We stop searching as start is greater than 6 —
3 — 1. In total, we find one cluster {r,, r,, r;, r,, 15 }.

Attribute r T I3 Ty s Te
a, 5 5 7 -1 2
a 6 5 7 0 4
a, 7 15 5
a, 7 6 1 2 8 5
as 1 10 30 60 10 1

(a)
-1 -1 0 0 o|2

T Ts Ty I3 T4 Tg

(b)
Fig.1 A running example. (a) Raw database;
(b) Finding MDSs for a,, a,

We notice that in DNA microarray, some expres-
sion levels are negative. A positive value means the
gene i is over-expressed at sample j. A negative value
implies the gene i is under-expressed at sample j. They
have totally different biological means. Therefore, we
cannot group them into the same cluster. Motivated by
this, we need to validate the resulting MDS.

To solve the sign consistent constraint problem,
we scan the resulting MDS to convert the expression
values to O or 1. The convert function is as follows:

. (1 if x=0
sign(x) ‘{0 if x <0

We use bitmap to store the converted results.
Then we process the bitwise NOT XOR operation.
The attributes having 0 are removed. And the MDS
having attributes less than n_ are deleted.

Consider the MDS {r,, r,, r;, r,, rs} above. It is
a maximal size-constrained cluster, but it does not sat-
isfy sign constraints. The sign-constrained cluster is
{ri,r,r,

3.2 Global pruning
The results from the previous step is the collec-

tion of MDS. Pruning insignificant objects and attrib-
utes helps sharply reduce the data space. We utilize
the information on the occurrences of objects and at-
tributes in MDS. Our pruning lemma is stated as fol-
lows:

Lemma 1 ( global pruning) Given the collec-
tion of MDS, we have the following conclusions: (1)
If attribute @, appears in less than (n, —1) MDS, then
the MDS including a; can be safely pruned; or @ If
object r; appears in less than (n, —1) MDS containing
a;, then object r; can be safely pruned; or (3 The MDS
containing less than »n, objects can be removed.

Example 2 ( pruning using lemma 1) Let us
check the MDSs in Tab. 1. Attribute a; does not ap-
pear in any MDSs, therefore a; can be removed from
the attribute set. Object r; can be removed in the same
way. Moreover, object r, appears less than (3 - 1),
and can be pruned. Only attributes a,, a,, a;, a, and
objects r,, r,, 5, I, survive after pruning.

Tab.1 Global pruning

Objects Attribute-pairs
{ri,ry, s} {ay,a,}
{ri.r,rs} {a;. a3}
{ri-r. 1} {ai.a,}
{r\,ry, 3,76} {a,, a5}
{ri,ry, 16} {ay, a4}
{ri.r.re} {as.a,)

After we get the initial MDSs, we can apply lem-
ma | to prune objects and attributes. This process is
carried out recursively until no pruning occurs. The
complicated situation is that there can be more than
one MDS for given attributes @, and a;. If an object
occurs in a distinct MDS, we add the count for this
object by 1, and the identical attribute-pair is contribu-
ted only once to the count. For example, there are two
MDSs for {a,, a, }, thatis {ry, r,, r,} and {r,, r,, 1, },
respectively. The occurrence for ¢, and q, is 1, and the
occurrence for r,, r,, r,, r; is also 1. The pruning algo-
rithm is shown as follows:

Input: The set of MDSs, S; the minimum # of objects, n,; the mini-
mum # of attributes, n.
Output: All candidate attributes, Y'; the pruned MDSs, S’.
Methods: GlobalPrune (S, n,, n,).
For all the MDSs including a;(i =1 to m) Do

Count the # of a;(i=1 to m), Ca;;

If Ca; < n, -1

Then return; //lemma 1D

Count the # of ri(j =1ton), er;

If er < n, -1

Then prune r; from S; //lemma 12

If “prune r” cause the # of objects in MDSs < n,

Then prune the MDSs; //Lemma 1@

Until no pruning occurs
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As indicated in lemma 1, the candidate objects,
attributes and MDSs are smaller than the original
ones. In practice, the shrinking factor can be signifi-
cant because in large datasets, many of the attributes
and objects are often irrelevant and redundant and
mask existing clusters in noisy data. The earlier we
detect them, the better the algorithm performs.

3.3 Depth-first traversal with pruning in an at-
tribute subset tree

In order to find the MPCs, we have to extend the
sets of attributes in MDSs. The attributes surviving af-
ter pruning can be partitioned into exclusive small
subsets. Assume that there is an order less than or e-
qual to in the set of attributes. We organize these at-
tribute power sets in a special kind of prefix tree,
which not only allows us to store them efficiently, but
also supports systematical enumeration of the possible
combination of attributes. The structure of a complete
attribute subset tree without pruning w. r. t. attribute
{a,, a,, a;, a,} in the running example is shown in
Fig.2.

. {}
TN ) laa) Tal

SN /NN

{01,02} {al,a3Ha1,a4HazyaaH¢12va4] {‘13’“4}

{ar,a;,as} tar,as,a4} {al’a3,a4}iazyag,a4}

101,02’03,04}

Fig.2 Attribute subset tree for attribute {a,, a,, a;, a,}

Each node denotes an attribute or attribute subset
and its corresponding maximal object set. The root of
the tree is at the top level. Recursively, we can grow
a node by adding one attribute to get the children
nodes, and the children of the current node are ar-
ranged according to the attribute order. The tree is un-
balanced since we deal with sets, not sequences. For
instance, {a,, a,} is the same as {a,, a, }. Therefore,
these four attributes make up 15 attribute subsets.

Definition 4 (head attribute set and tail attribute
set)  The attribute set corresponding to each node
will be referred to the head attribute set (HAS), and
the possible extensions of the node constitute the tail
attribute set (TAS).

Consider node N in Fig. 2, N’s HAS is {a,} and
the TAS is {a,, a,, a,}. Because the dataset consists
of a relatively small number of attributes, the tree can
fit into memory.

By enumerating all the combinations of attrib-
utes, we ensure that the attributes in all MPCs are enu-

merated. It is obvious that a pure depth-first traversal
is inefficient and pruning techniques must be intro-
duced.

Assume that a, is the last attribute in HAS, we
can trim unpromising attributes from TAS that list be-
fore attribute @, , or cannot form an MDS with any
one attribute in HAS, or form an MPC with every at-
tribute in HAS and the associated object set is not the
subset of the object set in MPC for H. Thus, we have
the following lemma.

Given HAS H =
}, attribute a; can be pruned from TAS if

Lemma 2 (attribute pruning)
{a,

IS

o a;
@ j<i,; or 2 there does not exist MDSc for pair
(a,,a;),where a, e H; or 3 C(XH) is MPC for at-
tribute set H, and C(X(HU {aq;})) is MPC for attrib-
ute set HU {q;}, then we can move attribute a; from
TAS to HAS.

Example 3 (pruning using lemma 2@3)) In our
running example. ({r,, r,, 13, 15}, {a,, a,}) is MDS
for {a,, a,}, and ({r,, 1y, 15, 15}, {a,, a,, a5 }) is
MDS for {a,, a,, a, }, thus node {a,, a,} can be re-
placed by {a,, a,, a,}.

Moreover, we can prune unnecessary subtrees
that have not enough attributes, or have been absorbed
by existing MPC, or the number of object subsets is
less than n,.

Lemma 3 (subtree pruning) Given node N, its
HAS H= {a,.], s a,.m}, and TAS T = {aj], . ajn}, its
corresponding object subset is X, the subtree of node
N can be pruned if @ | HUT| <n_;or @ for XCX’
and H C Y, there exists C(XH) and C(XY); or ®
\X \ <n,.

Based on the above pruning lemmas, the algo-
rithm generating MPC is stated as follows:

Input: All candidate attributes, Y’; the pruned MDSc, S'.
Output: Maximal pattern-based cluster, MPC.
Method:
Fori=1ton-n,+1 do
Forj=i+1ton-n,+2 do
Find MDS for pair(a;, aj) ;//level 2 of prefix tree
For each pair(a;, a;) do
Call generate-MPC( current node C, MPC) ; //depth-first search
Generate-MPC( current node C, MPC)
Find C’s TAS T;//lemma 2D and 2
If |CuT|<n,
Then stop searching and return; //lemma 3@
Count the MDS for C;
If the MDS for C is contained by some existing MPC or | X | <

Then stop searching and return; //lemma 32 and 3
Use lemma 2@®) to prune T and get T';
For each attribute a; in T’ do

C_new=CU{q;};
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Generate-MPC( C _ new, MPC) ;
If C is a leaf and C’s HAS is not in MPC
Then add C’s HAS to MPC

4 Performance Experiments

All the experiments are conducted on a PC with
an AMD Athlon 1700 + CPU and 512 MB memory
running a Microsoft Windows XP operating system.
We choose a bit vector representation for the object-
pair MDS (MDSo in short) and attribute-pair MDS
(MDSc in short) . Each element in this vector has a 0-
1 value corresponding to whether or not a given object
is included in that cluster. We evaluate our EMaPle al-
gorithm and MaPle with both synthetic and real life
datasets. With synthetic data, we can embed clusters in
specified subspaces. Since we know the locations, we
can check whether the algorithm can recover all the
clusters. For testing the performance of our algorithm,
both synthetic and real life data are used. We present
the experimental details in the following.

The synthetic datasets are generated from a syn-
thetic data generator as in Ref. [12]. In order to test
the scalability of our algorithm as we increase the ob-
jects in the data, we keep the number of dimension
fixed at 30, set t =1, n, =8, n, =0. 01n, the number n
of objects varying from 3 000 to 7 000, and we embed
30 subspace clusters. The results are shown in Fig. 3.
Since our subspace search strategy is not dependent on
the number of objects but rather it searches in the di-
mension-enumeration space, the impact of the number

of objects in EMaPle is not as large as that in MaPle.
24

> 8

—&— EMaPle
—&— MaPle

Runtime/s
-
[\®)
T

oo
T

41

]
3000 4000 5000 6 000
Number of objects

Fig.3 Scalability with the number of objects

In the second scalability graph, shown in Fig. 4,
we linearly increase the number of dimensions, set the
size of object at 3 000, ¢ =1, n, =0.2 m, n, =30, and
we also embed 30 subspace clusters. Here the increase
in runtime of EMaPle is obviously greater than in the
previous case due to the increase in the number of at-
tributes leading to the increase in the number of MD-
Sc. And EMaPle runs also faster than MaPle.

Fig. 5 illustrates the results of comparing EMaPle
to MaPle w. r. t. different minimal volumes of cluster

40 -
35F —&— EMaPle
—@— MaPle

Runtime/s

2
a2 808
T T T T

—_
(=]
T

1 1 1 ]
20 40 60 80 100
Number of dimensions

Fig.4 Scalability with the number of dimensions

on the yeast microarray ( available from http: //arep.
med. harvard. edu/network _ discovery). This bench-
mark dataset contains the expression level of 2 884
genes under 17 conditions. Because the number of
MDSc decreases as the minimal number of objects in-
creases, EMaPle runs faster on the larger minimal
number of objects and outperforms MaPle.

SO BB FMaPle
B MaPle

40

30

20

Runtime/s

10

20x9 30x8 40 x7 50x6

ne X n,

Fig.5 Time comparison on different parameters

Fig. 6 shows the runtime spent on MDSo, MDSc
and the whole EMaPle algorithm. The datasets used
are synthetic datasets with 3 000 x 30 and 3 000 x 100
in size, respectively, and the yeast microarray, the size
of which is 2 884 x 17. We set the parameters of three
datasets as follows: r=1,n,=6,n,=27;¢t=1,n, =8,
n,=27;t=2,n, =7, n, =40. Our proposed solution
takes advantage of the small number of dimensions

95
[l Generate MDSc
BB Generate MDSo

75 + & FMaPle

90 |

60

Runtime/s

45

30

15

3 000 x 30

3000x100 2884x17

nXxXm

Fig. 6 Time comparison on MDSo, MDSc and EMaPle
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compared to the number of objects by only calculating
MDSc. Time spent on MDSo even exceeds that of
EMaPle. Hence, our algorithm has better perform-
ance.

5 Conclusion

We are interested in automatically identifying
projections of the input data to a subset of attributes.
The solution we propose, EMaPle, has been designed
to find clusters embedded in the subspaces of original
data space. Experimental results demonstrate the effec-
tiveness and efficiency of our method.

In the future, we hope to extend our algorithm to
mining three dimensional clusters in gene-sample-time
microarray data. It is very meaningful to investigate
the pattern similarity in such data sets.
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