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Abstract: The current extended fuzzy description logics lack reasoning algorithms with TBoxes. The problem of

the satisfiability of the extended fuzzy description logic EFALC cut concepts w. r. t. TBoxes is proposed, and a

reasoning algorithm is given. This algorithm is designed in the style of tableau algorithms, which is usually used

in classical description logics. The transformation rules and the process of this algorithm is described and

optimized with three main techniques: recursive procedure call, branch cutting and introducing sets of mesne

results. The optimized algorithm is proved sound, complete and with an EXPTime complexity, and the

satisfiability problem is EXPTime-complete.
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"are a class of knowl-

Description logics ( DLs)
edge representation languages with well-defined se-
mantics and determinable reasoning methods. Web ap-
plications often need to represent fuzzy knowledge, es-
pecially when dealing with text, multimedia or uncer-
tain data. However, classical DLs are insufficient to
deal with such fuzzy knowledge. Therefore, it is neces-
sary to add fuzzy features to description logics.

Straccia presented a fuzzy extension of typical
ALC(FALC) ", and gave a constraint propagation cal-
culus for reasoning. FALC just offers limited but not
sufficient expressive power of complex fuzzy informa-
tion. Some discussion about reducing ALC into classi-
cal ALC was given in Ref. [3]; however, the reduction
did not extend the expressive abilities of FALC. To
overcome its insufficiency, we present a new family of
extended fuzzy description logics (EFDLs), in which
cut sets of fuzzy concepts and fuzzy roles are consid-
ered as the atomic concepts and atomic roles'*”'. Some
complexity results and reasoning techniques in EFDLs
were proposed in Refs. [6 —7], and in these papers, ex-
pressive advantages of our framework were discussed
in detail. However, these current extended fuzzy de-
scription logics lack reasoning algorithms with TBox-
es. This paper discusses the reasoning problems for the
extended fuzzy description logic EFALC with TBoxes,
proves the complexity of the problems is EXPTime-
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complete, and gives an optimized reasoning algorithm,
which is proved to be complete, sound and with a
worst complexity in EXPTime.

1 Reasoning Algorithm for EFALC with
Tboxes

The definitions of syntax, semantics, reasoning
tasks, and reasoning properties are given for EFALC
in Refs. [4 —5]. In this paper, we mainly consider
satisfiability of EFALC cut concepts w. r. t. TBoxes:

A given cut concept C;, ., is satisfiable w. r. t.

[ny. ..
TBox 7, iff there is an interpretation / such that / is a
model of T and Cfnl.‘.,,nkl #5
1.1 Transformation rules

In this section, we will propose a reasoning algo-
rithm for satisfiability of EFALC cut concepts w. r. t.
TBoxes. This algorithm is developed in the style of
tableau algorithms, which are usually used in classical
DLs. For satisfiability of ALC concept C,, the tableau
algorithm starts with an ABox A = {x,: C,}, then ex-
tends A with transformation rules and tries to create a
complete and clash-free ABox, which can be directly
converted into an interpretation satisfying C,. For
satisfiability of EFALC cut concepts, we modify a
similar but more complex algorithm. Given a cut con-

cept Gy, our algorithm starts with A = {x:

AL
Cotn,, ..y }» then uses transformation rules to extend
A, and tries to create a complete and clash-free ABox.

The transformation rules are given as follows,
and these rules can be applied to an individual x in
ABox A w.r.t. TBox T, when x is not blocked, and A

is not closed:
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e N-rule
Condition: x: D, ., N E, . € A
XDy, g0t xiEy g A
Action: A' =AU {x: D[n;,..,,ns]’x: E[nw,...,n,] 1.
e U-rule
Condition: x: D[ni,u.,n\] U E, .. ... € A,
X: D[n,-,...,nsj’E[nx”,...,nlj ¢A
Action: A' = AU {x: D, ., }i A =AU
{x: E[":Hv---v”lJ }.
e -rule

Condition: x: AR,- Dy, .1 e A, Yy eA,

D["H]““,n,] ¢A
Action: A' =AU {z Dy, .. (x2):R, }

where z is newly-generated.

(x,y): R, ory:

o V-rule
Condition: x: V Ry, Dy ugy (%, 9)1 Ry, €
A, YDy, a2 A, n, <n,.
Action: A' =AU {Y: Dy, a1}
e — -rule
Condition: x: = B, x: B, eA,n; +n;=1.
Action: A' =A, A is annoﬁnced closed.
o KB-rule
Condition: x: C, ¢ A.
Action: A' =AU {x: C,}.
Definition 1

terms used in transformation rules.

Here are the definitions of some

1) For any individual x in A, the label of x is
L(-x) = {C[n[,...,nj]
plied to x and a new individual y is created, (x, y):

| x: Cioong eALIE 3 -rule is ap-

R,, ., then y is a successor of x. Let descendant be
transitive closure of a successor. For any individuals
x, v, if x is a descendant of y, and L(x) CL(y), then x
is blocked by y, and all descendants of x are also
blocked.

2) In EFALC, an ABox A is closed, iff
{x: = By, x: By, (n; +n;=1) } CA.

3) In order to consider the TBox T, a cut concept
C, is introduced to represent the semantics of 7. C,

{-C U Dy . lC C
* T

[ny,....n;

[ny,....n;] [my, ...

Dy, wyeT }. An interpretation / is a model of T iff
A =(C ) " viz. each element in the domain belongs to
(cp'.

If none of the transformation rules can be applied
to A, then A is complete. An ABox A is closed, iff it is
announced closed, or else A is open. A finite set of

ABoxes S is complete iff any ABox A in § is com-
plete. S is open iff 9A €S, A is open.

Starting from S, = {A,: = {x,: Gy, s ap-
ply the transformation rules to current S, exhaustively.
We denote S,,, is the subsequence set of ABoxes of
S, so there is a chain of S, by the application of rules:
Sy—S, —...—S,—...—S,. If the complete set S, is
open, return that the cut concept C,, ., is satisfia-

ble. However, when applying the transformation rules

without optimization, the worst complexity is
2NEXPTime (it can be proved analogous to lemma
1), so an optimized algorithm is needed.
1.2 An optimized algorithm

Classic ALC has EXPTime algorithms for satisfi-
ability of concepts w. r. t. TBoxes'”'. We adopt the
optimizations in that algorithm of ALC to design an
optimized algorithm for the satisfiability of FALC cut
concepts w.r.t. TBoxes. Algorithm 1 adopts three
main techniques for optimization: first, it applies the
rules in a depth-first manner by calling a recursive
procedure; secondly, it optimizes the U -rule based on
the idea that for any C u>D if

C ., 1s found to be satisfiable, then C,

[ny,...ony] [np 10 mg]

[ng, ...,

_ny 18 satisfiable, and it is not necessary to

[npsrs -

check whether D, =~
sets U and V are used to record the labels causing the

nl is satisfiable; thirdly, two

closed ABox and labels whose individuals cannot be
applied by rules to avoid repeatedly checking and
whose corresponding ABoxes are open. Algorithm 1
and the procedure Sat are shown in the following.

Algorithm 1  Algorithm for satisfiability of
EFALC cut concepts w. 1. t. TBoxes

Output: Cy,,. ..., is satisfiable or not satisfiable.

Process: Let U—({), V().
If Sat(xo, {xo: Copny.....np }) is true then return that Cop,, 18
satisfiable;

else return that Cy,, ., is unsatisfiable.

Procedure Sat
Input: individual x, ABox A.
Output: true or false.
Process: D If L(x) e U then return false;
@ If L(x) eV then return true;
(3 If any transformation rule can be applied to x in A w.r.t. T
then apply a rule, do case
KB, N, = :A—A,;
if A is closed then goto (3);
V:A<A,, goto B);
U:if Sat(x, Ay, ) is true then A«A,,, goto ©);
if Sat(x, Ay,) is true then A«A,,, goto ©);
else goto (3);
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3 :A<A,, goto B);
@ If all rules cannot be applied to x, x is not blocked and x has m
SUCCESSOIS Zj, ..., Z
then do
fori=1 to m do
if Sat(z;, A) is false then goto (®);
else goto (©);
B U «U U{L(x)}, return false;
©® V «V U{L(x)}, return true.

m

In @ of procedure Sat, for A, we denote the re-
sultant ABox(es) by A, when applying =, N, 3, VY
or KB-rule; by A,,, A,, when applying U -rule.

2 Algorithm Analysis
Definition 2 For any cut concept C;,,

size of C[n,»,m,n_,»1 (|l Cp.

,,,,,,

|» the

b Tl
"l ||) is the number of sym-
bols used to write down C, where every name in N,
N, N and every constructor (=, N, N, 3, V) is
written in one symbol.

The set of subconcepts of Cy, _,, is defined as
SUb( C[ni, ...,nj] ) dgf{ C[n,-, ....nj] } U
sub(Dy,,, ) case (a)
sub(D[n,_Hw_nﬂ) case (b)
sub(D[,,t_w”nﬂ) Usub(E["mW”n/_]) case (c¢)
when C,, ., is of the form (a) = D, . (b)
EI R[ni] . D[n,ﬂ+1,4..,)17-] or VR[n,-]' D[n,ﬂ+1,4..,nj] ’ (C) D[ni,“..n,]
m E[n,H,u.,n]»] or D[n,- ..... nyl U E[nl+1,..4,nj]' It fOllOWS
‘ Sub( C[n,',.u,nj]) ‘ g HC[V[,»,“.,nj] H
Lemma 1(termination) Algorithm 1 is termina-
ted.
Proof The input size of the algorithm is N =
HCO[n],“,,nk] | + ||CTH From transformation rules, for

any label L, it follows LC sub( Cy, ) Usub(C,).

So |L|<N, and there are at most 2" different labels.
For any ABox A, its individuals can form a tree

cong]

T,. Let x, be the root node. For any node x in 7, the
successors of x are the child-nodes of x in 7. Since
there are at most 2" different labels, when the length
of a branch in 7, is more than 2" there must be x, y
on the branch such that L(x) = L(y), then the leaf
node is blocked. So the length of any branch in 7, is
no more than 2" + 1. No individual can have more
than N successors. Therefore T, has at most N(2" + 1)
individuals.

The execution of any Sat(x, A) is a call, x is its
individual. If a new call is created in Sat(x, A), then
the new call is a child of Sat(x, A). All calls can form
a tree Tp: let Sat(x,, {x,: Cy ) be the root

ny, e ngl }

node, for any node Sat(x, A) in T, its children are its
child-nodes in 7.

For any Sat(x, A), its child must satisfy that the
label is increased or the individual is a successor of x.
So any call can be executed in EXPTime if the cost of
its children is not considered. So the depth of T} is no
more than N(2" +1). For any call in T, it can only
apply no more than N° transformation rules; and its
children are no more than max (2, N):2 in 3), N in
@). So there are at most (max(2, N))"®"*" calls in T,.
Therefore, algorithm 1 is terminated in 2NEXPTime.

Furthermore, by introducing U and V, its worst
complexity is EXPTime. From (D to 6), V is always
increasing, so we can ensure that the numbers of total
calls are exponential.

Lemma 2 (complexity) The complexity of al-
gorithm 1 is EXPTime.

Proof In the tree T, for any two calls Sat( x,
A,) and Sat(y, A,), they have the same label L,
i.e.,, L(x) =L(y), and Sat(x, A,) is created before
Sat(y, A,).

If Sat(y, A,) is a descendant of Sat(x, A,), then
y must be a descendant of x in A, and L(y) ©L(x).
So y is blocked and Sat(y, A,) has no child.

If Sat(y, A,) is not a descendant of Sat(x, A,),
then Sat(x, A,) ends before Sat(y, A,) is created.
From (6), we obtain L(x) e V, and Sat(y, A,) has no
child.

Therefore, for any nodes with the same label in
Ty, only one of them can have children. There are at
most 2" different labels. All nodes in T,, except the
root, are children of other nodes. Since any node has
no more than max(2, N) direct children, there are at
most 1 + max (2, N)2" nodes in Ty, i. e., the total
number of calls are exponential to N. In lemma 1, it
proves that every call can be executed in EXPTime.
So algorithm 1 can be executed in EXPTime.

Lemma 3 ( completeness)
(0,11, Cy .
1 returns that C,,

For any given n;
is unsatisfiable w. r. t. T if algorithm

ol
..ny 1s unsatisfiable, i. e., Sat(x,,
{x0: Copny, .. g }) returns false.

Proof For any label L, there exists a model of
T, 1, such that N {( C[ni,m,njj )I ‘ C[n,- AAAAA nl € L} # @»
then we say [ is a model of L. If L has no model, we
say L is unsatisfiable. From (3), L e U iff there exists a
call with label L returning false. It can be proved that
for any L e U, L is unsatisfiable.

When |U| =0, for any L e U, L is unsatisfiable.
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When |U| =1, the foremost call adding L into U
must be in 3) case = , and there is {— By, B[,,j] JCL
and n; +n;=1. Then, there is no interpretation / such
that (= By,,))" N (B,))' #. So L is unsatisfiable.
Assume that when \U\ =r for any L € U, L is
unsatisfiable.

When |U| =r+1, let Sat(x, A) add a new L in-
to U. It may

1) apply —-rule and there is {— B, B[n,] JCEL,
n; +n;=1. The proof is the same as the above.

2) apply -, KB, N-rule: let the label of the
child be L,. And L, € U, L, is unsatisfiable. So L is
unsatisfiable.

e Incase - ,L=L,.

e In case KB, assume that L has a model /. Then A’
=(C,)';since L, = LU{C,}, I is also a model of L.
It is in contradiction to that L, is unsatisfiable. So L is
unsatisfiable.

e The case N is similar to the KB case.

3) apply U, V-rule: let the labels of the two
children be L, and L,. L,, L, € U, and L, L, are unsat-
isfiable. So L is also unsatisfiable.

elncase V,L=L, =L,.

e In case U, there is D[n[___,ns] UE[,,M___,,II] el, L,
=LU{D, ., }andL,=LU {E[,,Hlmnﬂ }. Assume
that L has a model /. Then (D, ., UEIn.Hl,,..,nj])I?é

(J). From the interpretation definition”, (D, )’
#J or (E,, ) # . So I is a model of L, or
L,. It is a contradiction.

4) have a child from (@): let the label of the child
be L, € U, and L, is unsatisfiable. L, is created by ap-

DR EEERE

plying 3, V -rule to L. So L is also unsatisfiable. Here
only prove the V -rule case, other are similar.

From transformation rules, if the V -rule is ap-
plied, then x: VR;,;. Dy, .1 € A and there is a y
with (x, y): R[,l/_] € A, n; < n;. Assume that L has a
model 1. Then x e ( YR;- Dy i)’y (X, y) €
(R[nf])l. From n,<n;, (x,y) € (R,,;)". Then x satis-
fies that Vy e A, (x, y) € (R,;) —y e
(Dy,.......)'- So y satisfies that y e (D, )"
The Y -rule only adds D,

I is a model of L,. It is a contradiction.

— into y’s label L,. So

Therefore, for any =0, when |U| =r, it follows
for any L e U, L is unsatisfiable. If Sat ( x,, {x,:
Cotn, ..ng }) retumns false, then {C, w1 € U, so

CO[n], ey

[ng, ...

is unsatisfiable.

ngl

Lemma 4(soundness) For any given n; € [0,
11, if algorithm 1 returns that C,, ., is satisfiable,
it can build a model of T, 1, such that (Cy, ;)" #
Dii.e., Cyp, ., is satisfiable w.r. t. T.

Proof We can build an interpretation I = (A’,
"y from ABox A created by the call Sat(x,, {x,:
Cotnyong D A’ is the set of all individuals in A which
is not blocked. For any x € A", B e Ne, B (x) =
max ({0} U {n, | x: B, €A}).

For any x,yeA',Re Ny, R'(x,y) =max({0} U
{n, | (x,y) e wR,,,}), where wR,,, ={(x, y) | there
exists z such that (x, z): R[,,jJ eA, n,<n, where z is
blocked by y or z =y}.

For any x, y A" and R[,,‘_], if (x,y): R[,,,_] eA,
then R'(x,y) =n,;, (x,y) € (R,,)' =7R,,,. So I sat-
isfies all the role facts in A. In succession, prove that
for any x e A" and Crooong» if 22 C
e( C[n,-,...,n-])['

When |, ., 1=1,C,
form B, . If x: B, €A, then B'(x) =n,,xe(B,)".

Assume that for any x € A’ and HCMM,WJ | <r, if

) € A, then x

[n, .

must be of the

,“,nj]

x:Cp,, .0y €A then xe (Cp, )"

When || Ci. .. "l [=r+1, C[n,-,...,n,] must be of the
form, 1. e., HR[n,-J' D[,IM,...,an, VR[n,-J- Dln,-”....,njjv
D[n,-,,.,,nl‘.] UE[nHl,“.,nﬂ or D[n,- ,,,,, gl mE[nl\.*,l,“.,nf]:

1) If C[,,I_,_M,,/_J =Dy, . uy ﬂE[nm’_wnl_J , then from
the N-rule, it follows x: D, ., € A and x:

gars o) € A. So x: (D[niwwn.\-])l and  x:

(E[nm___y,,j])l. Then it has x: ( D,
1 1

(E[’l,ﬁl,.u,nj]) :(D[ni,“.,ns] mE[}lH],m.nj]) .

2) If C =D ny U E[”snv---v“/] or
AR, D[,l,,],‘,,,nj], these two cases are similar to case
1). It has x: (D,
( EIR[n;]' D["le»v"_/])l'

3) If C,, .

[n[,...,n/-] [n ...,

1
<o ] U E[”le»»»n]’]) or x e

g = VR, Dy, .., then for any

(x,y) e (R[”[])' = frrR[,,i], from the V -rule, for any z

such that (x, z): R, € A and n,<n;, z: D 5

n,‘+|,4..‘,nj]
A; for any y such that y =z or y blocks z,1i.e., (x,y)
emR,,,. it has L(z) CL(y), y: D, | € A; then,

LIPS P
since ||D l<r,ye (D ) )'. From the

["i+lv---~”j] ‘ [nj41,-
. . . e 1
interpretation definition, x e ( V Ry,;- D[n,,,,‘..,nj]) .

: 1
Since x, cannot be blocked, x, e A"; x,: Cyp,,
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xeA',x:C,eA, s0xe(C,)" =A". Therefore, Iis a
model of T and satisfies ( Cy,, ., ) %= O, i e,
CO[nIN

Any classical ALC knowledge base K can be

_ny 18 satisfiable w.r. t. T.
transformed to an equivalent EFALC knowledge base
K'. The transformation from classical to fuzzy is trivi-
al: for any concept name B and role name R in K, re-
place them by B,,, and R, in K'. Since the satisfi-
ability of ALC concepts w. r. t. TBoxes is EXPTime-
complete, and it can be polynomially reduced to the
satisfiability of EFALC cut concepts w. r. t. TBoxes,
the latter is EXPTime-hard but has an EXPTime algo-
rithm (algorithm 1). It follows:

The satisfiability of EFALC cut
concepts w. r. t. TBoxes is EXPTime-complete.

Theorem 1

3 Conclusion

We propose a reasoning algorithm for the extend-
ed fuzzy description logic EFALC. The algorithm is
for satisfiability of EFALC cut concepts w. 1. t. TBox-
es. In detail, we describe the transformation rules and
the process of this algorithm. We also prove that it is
sound, complete, and with an EXPTime complexity,
and the satisfiability problem is EXPTime-complete.
Further work includes extending EFALC with more
concept and role constructs and considering TBoxes
with variables.
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