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Weak solutions to one-dimensional quantum drift-diffusion
equations for semiconductors
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Abstract: The weak solutions to the stationary quantum drift-diffusion equations ( QDD) for semiconductor
devices are investigated in one space dimension. The proofs are based on a reformulation of the system as a
fourth-order elliptic boundary value problem by using an exponential variable transformation. The techniques of
a priori estimates and Leray-Schauder’s fixed-point theorem are employed to prove the existence. Furthermore,
the uniqueness of solutions and the semiclassical limit §—0 from QDD to the classical drift-diffusion (DD)
model are studied.
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During recent years there has been rapid progress in the miniaturization of semiconductor devices, reaching a
length scale at which quantum effects play a dominant role. This paper is concerned with the analysis of the steady
state of the quantum drift-diffusion model (QDD) for semiconductors. The QDD describes electron transport in
semiconductors as a quantum fluid and it is of considerable physical and practical importance. It is an extension of
the classical drift-diffusion model including quantum corrections. These quantum terms allow a description of quan-
tum effects. For an overview of the classical drift-diffusion model, refer to Refs. [1 —3]. More details and a deriva-
tion of the QDD can be found in Ref. [4]. In Ref. [5], a bipolar quantum drift-diffusion model including genera-
tion-recombination terms is considered. To our knowledge, there is no uniqueness result for multi-dimensional sta-
tionary QDD equations'® . This is why we consider the stationary quantum drift-diffusion equations in one space di-
mension.

The macroscopic quantum equations in a one-dimensional stationary version have been developed in the past
years. The existence and uniqueness of strong solutions with positive electron density to a one-dimensional quantum

¥ studied the steady-state

Euler-Poisson system for semiconductors was considered in Ref. [ 7]. Gualdani and Jiingel
viscous quantum hydronamic model in a one space dimension, which consists of the continuity equations for the e-

lectron and current densities, coupled to the Poisson equation for the electrostatic potential.

1 Reformulation of the Equations

The scaled equations of the QDD in a one space dimension read:

(/n).,,

n,=J, J=Tyn, —nV, —é‘zn(
n

) , AV, =n-C(x) xe(0,1),7>0

where n(x, t) is the election density, V(x, f) the electrostatic potential, and J(x, t) the current density. The doping
profile C(x) models fixed background charges. We assume that the ambient temperature 7|, be positive. The dimen-
sionless constants § and A are the scaled Planck constant and the scaled Debye length, respectively.

The objective of this paper is to analyze the one-dimensional stationary version of the quantum drift-diffusion

model:
T,n, —nV, —szn((ﬁ)”) =J, (1)
n X
ANV, =n-C(x) xe(0,1) (2)

where the current density J, is a positive constant. We choose the physically motivated boundary conditions:
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n(0) =n(1) =1, n,(0) =n,(1) =0, V(0) =V, (3)
Dividing (1) by n and taking the derivative gives

To(ﬂ)x n-C(x) _62((ﬁ)n) :(JO)X

AZ

n Jn n
After an exponential transformation n =e", we obtain
8 [
55 )+ T e =0 -0 (4)

With boundary conditions for u:
u(0) =u(1) =0, u,(0) =u,(1) =0 (5)
As usual, we call u eHﬁ(O, 1) a weak solution of (4) and (5), if for all eH(z)(O, 1) it holds:

i : ”i ! b L .
_2JO(7 +uu)¢mdx Tofouxtﬁxdx +Jof0e uapdx = A fo(e C)pdx

The nonlinear fourth-order equation (4) with boundary condition (5) is the problem to be analyzed in this paper,
which is organized in the following way.

2 A Priori Estimates

In order to use the Leray-Schauder fixed-point theorem'*™” to prove the existence, we need the following lem-
ma 1;to prove the uniqueness, we need lemma 2.

Lemma 1 Suppose that C e L™ (0, 1) be such that C >0 and u Hﬁ(O, 1) be a solution of (4) and (5). Then
estimate

s
?” U, ||2LZ(0, n Tt T, ” u, Hizw, i =C, (6)

holds. In particular, it follows that | u]],.. o =C,, where C, = ,/C,/T,.
Proof We use ¢y =u as a test function in the weak formulation of (4) to obtain

i l u)zcuxx 2 : 2 : —u _ -2 ! u
zjo( : +u”)dx +T0joux —Jofoe wudx =—A jo(e — C)udx (7)

It is not difficult to see that e ' + || C10gCHLx<o,l) is an upper bound for the function ¢(u) = —u(e" - C(x)),

u e R, for every x e (0, 1) . Furthermore, the boundary conditions give
1

[ wfude = SGAD =) =0

and
1 1
foe‘“uxudx =—u(x)e™™ [ + joe"‘(“) du(x) =0

So we conclude that (7) can be estimated as

' by 2, -

TJO“*‘ dx + Tofouxdx <A7(e™ +]ClogCllug )
or

52
2 g By + Tollu, ey < €,

L2(0,1) 12(0,1)
where C, =A (e™" + [ ClogC||,-.,,) . Finally, from the Sobolev imbedding theorem, ||ull,- ,, <|lu,ll20 , <C.,

where C, = m . This proves lemma 1.
Lemma 2 Let §<7,/2 hold and u e H;(0, 1) be a weak solution of (4) and (5). Then [u, |, <C,

holds.
Proof We observe that, due to the boundary conditions for u_,
x . LI L
”i(x) = 2f0”x(s) u,(s)ds < 2( foui(s) ) ’ (fouix(s) ) ’ < 2”% ||L2(o,1) ||uxx ||L2(o,1) (8)
and thus,

_ e

1 1 V2
‘ MX(.X) ‘ = ﬁ””;; ||L22(0,1) Huxx ”LZZ(O,[) = 2 Hul HLZ(O,I) + g”u“ H

x 11200, 1)
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taking & = /2, we obtain
1
H"‘xHLm(o,l) $%H"‘XHLZ(O,U +;HMXXHL2(0,1)

T,

for all @ >0. Choosing a = and lemma 1 gives

JT, /T, [85°

<
26 T2 AT, S

1

|| u, ”Lw(o, i) =

where C, = ,/T,/6, we have employed 6§<T,/2.
3 Existence and Uniqueness of Weak Solutions

Theorem 1 Let Ce L™ (0, 1) be such that C >0, there exists a weak solution u e H,(0, 1) of (4) and (5).
Proof Consider the problem

62 1 82 1 1 1 . o 1 "
=5 watp = o] Wiwady =T, [ wpdx ol ewpdy = Pfo(e — O)pdx (9)

where o € [0, 1], with boundary conditions:
u(0) =u(l) =0, u,(0) =u, (1) =0
and w e Hy(0, 1), the test functions y € H;(0,1).
Defining the bilinear form:

82 1 1
a(u’ (p) = 7[ uxxl;bxx + TOf uxl:llxd‘x u’ l!/ € H02(07 1)
2 0 0
and the linear functional:
8 ', o' e,
F(y) = —Zafowx W dx _Pfo(e ~O)y dx +0-J0j0e w apdx

for e H,(0,1). Then there is a constant m >0 such that a(u, u) >ml|u

.1 - 1- €., the form a( -, +) is coercive
on Hg(O, 1) x Hé(O, 1). Moreover, a( -, +) is continuous and the linear functional F is continuous on HOZ(O, 1).
By the Lax-Milgram theorem, there exists a unique solution u H(Z)(O, 1) to a(u, ) =F(y) for y HOZ(O, 1), 1.
e., u solves (9). Thus, the operator
S:Hy(0,1) x[0,11—>H)(0,1), (w,o)r—u

is well-defined. It can be seen easily that the operator S is continuous. Due to the compact imbedding of H,(0, 1)
in H(I)(O, 1), it is compact. Additionally, we have S(w, 0) =0 for any w e H(l)(O, 1). Following the steps of the
proof of lemma 1, we can know that HMHH& <constant for all (u, o) e Hy(0,1) x [0, 1] satisfying S(u, o) = u.

All conditions of the Leray-Schauder fixed-point theorem for the compact operator S are satisfied. The exist-
ence of a fixed point T(u, 1) =u follows.

Remark 1 By the embedding theorem, we have u e L™ (0, 1), so we can conclude the existence of a posi-
tive lower bound for n =e". Notice that this yields positives without the use of a maximum principle.

Remark 2 Obviously, with u e Hﬁ(O, 1), the evaluation of the potential V is straightforward.

In the sequel, the uniqueness result is established. Here we also need §<7,/2.

Theorem 2 If J, >0 is sufficiently small and u, v e H*(0, 1) are two weak solutions of (4) and (5), then u
=v holds.

Proof Take difference of the weak formulations of (4) for u and for v with test function u — v e H,(0, 1),

i ! 2 i ! 2 2 ! 2 _
ZJ()(MX" v, dx + 4j0(ux v. ) (u —v), dx +T0JO(”X v,) dx =
1! ! :
—7f (e" —e")(u —v)dx +J0f (e™u, —e™v,)(u —v)dx (10)
Ao 0
1
The monotonicity of x —e* implies — A ~ f (e“ —¢e") (u —v)dx < 0 and we have
0

1 1
gjojoe_“‘ux _VxHu —V‘dx +J0f0vx‘e—u _C_VHM —v\dx$

1
Jofo(e'”ux —ev)(u —v)dx
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Jy(4e2C,C, +4C,eC,) =8J,C,C,e”
We conclude from (10)

& ! 2 ' 2 ! 2 c
?Jo(um — ) dx + Zfo(”* —v2)(u —v) dx +T0f0(ux —v,)%dx < 84,C,C,e

or
1

il 5 ?’7]101 2 S T,
4fo(u” ~Va)dy 4 4 fo(uX —v) dx+fo(?‘u“ _V”‘ g

1
2 e = vl T, v (VT =2, 4, [)dx < 8,6,C,e°

2
u, —v,| ) dr+

By lemma 2, we conclude /T, - % |u, +v,_|=0. For sufficiently small J, >0, we obtain

R 2y, STt 2
4f0(u“ -wv,) dx + 1 fo(ux -—v,)dx <0
This implies u —v =0 in HZ(O, 1) and therefore in (0, 1).
4 Semiclassical Limit

In this section, we prove the following theorem, the proof of which is a consequence of the key estimate (6)
and the compact embedding H'(0, 1) into L” (0, 1).

Theorem 3 Let u; be a solution to (4) and (5). u; denotes the 5-dependent of u. Then as 6—0, maybe for
a subsequence,

us;—u weakly in H' and strongly in L* (11)
and u is a weak solution of
Tyu,, +J,e 'u, =A (e = C) (12)
subject to the boundary condition
u(0) =u(1) =0

Proof From lemma 1 and Sobolev embedding theorem, we obtain
[ Us ”Hl(o,l) =c
where ¢ is a §-independent constant. Therefore, we have a subsequence of u;(not relabeled), such that (11)
holds. After integration by parts, the weak formulation of (4) reads

é 1 ﬁ 1 a 1 1 g > 1 us
- 4 joué,x(/jxxdx - 2 jouﬁw.xxx,xdx - TOfoué,xlpxdx - JOJOe uﬁ,x(/jd‘x + /\ Jo(e - C)djd‘x

The convergences (11) allow us to pass to the limit 5—0 in the above equation, observing that the left-hand side
vanishes in the limit:

1 1 1
0 = Tof u g, dx —Jof e updx +A‘2f (e" — C)ypdx
0 0 0
This shows the weak form of (12) holds.
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