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Abstract: Principles and performances of quantum stochastic filters are studied for nonlinear time-domain

filtering of communication signals. Filtering is realized by combining neural networks with the nonlinear

Schroedinger equation and the time-variant probability density function of signals is estimated by solution of the

equation. It is shown that obviously different performances can be achieved by the control of weight coefficients
of potential fields. Based on this characteristic, a novel filtering algorithm is proposed, and utilizing this
algorithm, the nonlinear waveform distortion of output signals and the denoising capability of the filters can be

compromised. This will make the application of quantum stochastic filters be greatly extended, such as in

applying the filters to the processing of communication signals. The predominant performance of quantum

stochastic filters is shown by simulation results.
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The question of signal processing by means of
nonlinear systems is attracting increasing attention'',
and this paper focuses on nonlinear filtering of commu-
nication signals. A filter characterized by randomly
time-varying parameters is known as a stochastic filter,
and the essence of stochastic filtering is the computa-
tion of the time-dependent probability density function
for the state of an observed system by performing oper-
ations on a historical ensemble of observed data'®'.
Quantum neurodynamics is a mathematical model for
analyzing biological neural systems by quantum me-
chanics, and, in the past years, some research on non-
linear filtering based on quantum mechanics has been
done"”™' . Based on the previous work, this paper stud-
ies the model and performance of quantum stochastic
filters (QSF) and a novel filtering algorithm is pro-
posed. Simulation results show that the performance of
QSF can be greatly improved by the algorithm. In con-
trast to the previous literature which has focused on
speech signals and target tracking, this paper focuses on
communication signals, and the filtering algorithm pro-
posed is novel.

1 Model of QSF

1.1 Nonlinear Schroedinger equation
The nonlinear Schroedinger equation has a time-
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dependent form, which is a partial differential equa-

. 16
tion'®",
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where 7 is the Planck constant divided by 21, i is the
imaginary unit, m is the mass of the particle, and
V(x, 1) is a spatial potential field with a nonlinear
component. ¢ (x, t) is the wave function associated
with the particle at space-time point ( x, t);
\ P(x, 1) |2 represents a probability density function for
the location of the particle in the vector space and can

be expressed as
+
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1.2 Principle of QSF

The architecture of the proposed quantum sto-
chastic filters is shown in Fig. 1, where y is the input
signal, ¥ is the estimate of the actual signal, and N is
the number of neurons. The synaptic weights K(x, t)
are an N x 1 dimensional vector, and their values are
expressed by W,(1<j<N). ¥ and the potential field
V(x,t) can be expressed as

50 = [ap(x,dx (3)
Vix0) = U + Gy (4)
UCx.1) == K(x, 0)y() (5)
p(x, 1) = |y(x,0) |? (6)
G(ly[?) = K(x, 1) |xp(x, t)dx (7)

where  is the weight coefficient of the potential field
V(x, 1), and weight K(x, ¢) is updated using the Heb-
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bian learning algorithm:
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Fig.1 The model of quantum stochastic filters

1.3 Integration of the Schroedinger wave equation
The Schroedinger wave equation is a partial dif-
ferential equation in two variables: x and ¢, the equa-
tion can be converted to the finite difference form by
dividing the x-axis into N mesh points so that x and ¢
are represented as
N-1 N-1

x; =jAx ) SYES > (10)
t, =nAt n=0 (11)
The finite-difference form of Eq. (1) is ex-
pressed as
" P(x, t+AD) —p(x, 1) _
At
Fy(x+Ax, ) =2(x, D) +p(x = Ax, 1)
— 3 +
2mAx

V(x, )p(x, 1) (12)

2 Algorithm of Filtering

Eq. (1) involves four external parameters: 7, /,
m, 3. For simplicity, the parameter 7 is taken as unity,
and the other three parameters are selected by optimi-
zation. It follows that quantum stochastic filters are
near-optimal.
2.1 Optimizing parameters

Since the optimization of parameters /, m and 3
is a multivariate optimization problem, and the square
error between output signals and reference signals is
selected as the objective function. Here, we use a ge-
netic algorithm ( GA) based on the concept of the uni-
variate marginal distribution algorithm (UMDA)'"':

(D Initialize population;

(2 Select better individuals;

(3 Compute frequencies of gene values;

Po=lYa k=120 (3)
j=1

where x,is the value of the k-th bit of the j-th individ-
ual, n is the number of the better individuals;

(@ Generate new solutions;

(® If terminating conditions satisfy, then finish;
otherwise, go to step (2.
2.2 Learning of neural network

After the parameters [, m, 8 are selected, a signal
which is similar to the actual signal processed is se-
lected as the training signal. In the processing of train-
ing, Eq. (12) is iteratively updated several times for
the wave equation to reach a steady state to an instant
sample. Since the neural network is a feedback net-
work, weights W;(1<j<N) must be normalized, and
the probability density function p(x, ) must also be
normalized according to Eq. (2).
2.3 Filtering

The input signal is estimated by parameters /, m,
Band W,(1 <j<N), and when compared with the
previous algorithm in Ref. [5], the value of / can be
adjusted for a tradeoff between the accuracy of the es-
timated signal amplitude and the capability of denois-
ing of the filters. As far as the complexity of computa-
tion is concerned, the computation load in training and
optimizaiton is heavy, but the load is small in filtering
and it is O(n).

3 Simulation Results

Parameters used for integration are selected as: N
=401, Ax =0. 1, Ar =0.001. Since the simulation is
focused on communication signals, a sinusoid signal
with amplitude 1 is selected as a training signal. First,
using GA to select the parameters, the obtained values
are { =2 750, m =0. 168, 8 =0. 321 8, and the initial
value of P, (1<k<mn) is 0.5. Next, fixing the param-
eters £, m, 3, then weights Wj.(l <j<N) are trained
by the sinusoid signal, and the initial values of W,(1<
jJ<N) are selected randomly from [ — 1, 1]. Fig. 2
shows that the phase information can be resumed even
though variance of noise is 4, and SINR (signal to in-
terference noise rate) improvement of at least 11 dB
can be achieved.

4 Control of Weight Coefficient

In the above simulation, it is shown that / can be
adjusted in a large range and the performance of the
model can be improved by the control of {. The regu-
lation of control is: the higher the value of £, the smal-
ler the distortion of the output signal, but the capabili-
ty of eliminating noise declines. Simulation results are
shown in Fig.3. From Fig. 3, it is shown that in the
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Fig.2 Simulation results. (a) The actual signal s,, which is a binary phase shifting keying( BPSK) signal; (b) y, is s, embedded in
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Gaussian noise with mean 0 and variance 0. 25; (c) Filtering of y, (¢ =1750); (d) y, is s, immersed in Gaussian noise with mean 0 and vari-

ance 4; (e) Filtering of y,({ =150); (f) The actual signal s,, which is a pulse modulation signal; (g) y; is s, embedded in uniform distribution

noise with mean O and variance 0. 25; (h) Filtering of y;(£ =1750); (i) y, is s, immersed in uniform distribution noise with mean 0 and vari-

ance 4; (j) Filtering of y, (¢ =150)

case of low noise, when ¢ =150, the amplitude of out-
put signal is around 0. 8, and if / =2 750, the ampli-
tude is around 1; in the case of high noise, when ¢ =
150, phase shift can be found in output signal, but if
=2 750, phase information cannot be resumed.

As the explanation of this phenomenon, one can
find the answer from Eqgs. (1) and (4). When ¢ in-
creases, wave function (x, f) becomes more sensitive
to the change of v(¢), but if / decreases, y(x, t) will
be less sensitive.

5 Conclusion

Combining quantum mechanics with neuro-
science, quantum stochastic filters can resume the sig-
nals contaminated by heavy noise. Although the com-
putation complexity is great in training and optimiza-
tion, it is small in filtering, and the filters also exhibit
good performance when the nature of noise is un-
known. Moreover, the capability of the filters will be
much more predominant by adjusting /, and these ad-
vantages will make the proposed filters applicable to
the filtering of communication signals.
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Fig.3 Control of weight coefficient. (a) ys is s, embedded in Gaussian noise with mean 0 and variance 0. 015 6; (b) Filtering of ys({ =

20 21 2 » 24 25
®

2750); (c) Filtering of ys (¢ =150);(d) yg is s; immersed in Gaussian noise with mean O and variance 3. 15; (e) Filtering of y({ =2 750);

(f) Filtering of ys({ =150)
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