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Abstract: Two new methods, the generalized Levy method and the weighted iteration method, are presented for

identification of non-integer order systems. The first method generalizes the Levy identification method from the

integer order systems to the non-integer order systems. Then, the weighted iteration method is presented to

overcome the shortcomings of the first method. Results show that the proposed methods have better performance

compared with the integer order identification method. For the non-integer order systems, the proposed methods

have the better fitting for the system frequency response. For the integer order system, if commensurate order

scanning is applied, the proposed methods can also achieve the best integer order model which fits the system

frequency response. At the same time, the proposed algorithms are more stable.
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The aim of any system identification is to estab-
lish a mathematical model capable of reproducing the
system’ s physical behavior as faithfully as possible
from a series of observations. In the time domain, many
mathematical models have been developed such as AR,
ARX and ARMAX'" . In the frequency domain, many
methods have been collected in Ref. [2].

Studies on real systems such as thermal” and
electrochemical'” systems reveal inherent non-integer
(or fractional) differentiation in their behavior. The use
of the above integer models is thus inappropriate in
identifying these non-integer systems. A new category,
called non-integer models, based on the concept of
non-integer differentiation, has been developedm.
Non-integer AR, ARX and ARMAX models in particu-

lar can, unlike the integer versions, identify thermal™

and electrochemical systems'* .

Since the 1970s, many authors have worked in
physical modeling of dynamic systems using fractional
calculus in order to fit time and/or frequency behav-

[6-8]

iors”” . Less effort had been made in applying frac-

(591 " In order to

tional calculus to identification
identify non-integer order systems, two new methods,
the generalized Levy method and the weighted iteration
method, are presented. First, the Levy identification
method for the integer order systems is extended for
the non-integer order systems. Then, the weighted itera-

tion method is presented to overcome the shortcomings
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of the first method. Results show that our methods ob-
tain better performance compared with the integer order
identification method.

1 Generalized Levy Method

The Levy method is a well-established method for
finding the coefficients of an integer transfer function
that models a plant with a known frequency behav-
ior'™ . So we extended the Levy method for the case of
non-integer orders.

Let us suppose a system G with a known frequen-
cy behavior and we want to model it using a commen-

surate transfer function''".
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Here the commensurate order r which can be non-in-

1 +a;s +a,s" +...+a,s"

teger is known in advance.
The frequency response of Eq. (1) is given by
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where N and D are complex-valued; «,f, o and 7 are
real-valued. The error between the model and the sys-
tem, for a given frequency w;, i =1,2, ..., K, will be
N(wi)
~ (3

3(‘“;) = [R(wi) +jl(wi)] _D((u-)
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where G(jw;) =R(w;) +jl(w,).

It might be possible to adjust the parameters of
Eq. (1) by minimizing the norm (or the square norm)
of the error. But this is a nonlinear optimal problem.
In order to simplify this problem, Levy minimized the
norm of

Z, | D(w,) e(w,) | ? =

K
Y I D(w)Gljw) - Nw) |’ (4)
i=1
In order to alleviate notation, we define
K
=Y I D(w)e(w) || (5)
i=1

we will have the norm of J
= Z {[Rw)o(w) —Kw)m(w,) —alw)]’
[R(w)7T(w,) +Hw)o(w,) —Bw)]*t (6)

where
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Blw) = gobkwf’sm(’?) (8)
o(w) =1 + Zakw cos(kzﬂ) 9)
Hw) =1+ ;aka} sm(";“) (10)

Then, we differentiate J with respect to the coef-
ficients a, and b,. Then let
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We have
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The (m +1) equations given by Eq. (13) and the
n equations given by Eq. (14) make up a linear sys-
tem that may be solved so as to find the coefficients
of Eq. (1). According to Egs. (13) and (14), the

linear system on coefficients a and b is

e =[] as)
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2  Weighted Iteration Method

The drawbacks of the Levy method are well
known, one of them being that low frequency data has
little influence on Eq. (15) and the resulting fit is
poor for such frequencies. Using well-chosen weights
for decreasing the influence of low frequency data is a
means of dealing with this. Here, we select the itera-
tion formula

JL* — i {g(wi)D(wi)L}z (22)

i=1 D(w;)
where L is the iteration number and D, , is the de-
nominator found in the previous iteration. In the first
iteration this is assumed to be 1 and the result is that
according to the Levy method. If convergence exists,
subsequent iterations will be J;" converging to &.

Let

L 1
- ‘DL—I(wi) ‘2
be the weight functions. It depends on coefficients
known from the L — 1 iterations, not the current one,
and so derivatives Eqgs. (11) and (12) are not affect-
ed. The only difference in the method is that matrices
and vectors in Eq. (15) will now be given by

(23)
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3 Verification of the Method

To illustrate the advantages of these methods in
system identification, the proposed procedure is ap-
plied to identify systems with known parameters.

First, given a known integer-order system

3 +7s
Gils) =1 +25 +55° +95° +s* (30)
We use the model

b, +b;s
2r + a3s3r + S4r
to reconstruct the transfer function with the commen-

surate order »r =0.1,0. 2, ...,

G,(s) = (31)

;
a, +a,s" +a,s

1, respectively. The re-
lationship between the error index J and the commen-

surate order r is shown in Fig. 1.
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Fig.1 The relationship between error index J and com-
mensurate order r
The error index J is the minimal, when the com-
mensurate order r equals 1. The minimal error index J
is1.0592 x 10", So r =1 should be the best com-
mensurate order, in this case, the result of identifica-

tion in frequency range from 10~ to 10’ Hz is
3 +7s

Gi(s) :1 +25 +55° 495 +s' (32)
Besides this example, we also examined many
other examples. All the results show that we can
achieve the same degree of fitting when the frequency
responses exhibit integer order slopes, provided that an
appropriate structure is offered using the non-integer

order transfer function model.

Then a known non-integer order system is con-
sidered, the transfer function is
141.1 +10010s** +1.4145*" +100s"*

G,(s) =
2(5) 1 +0.15"% +0.014 145" + "%
(33)
The model
~ by +b,s" +b,s" +b,s +b,s" +bs”"
GZ(S) = r 2r 3r 4r 5r
a, +a;s +a,s” +ays +a,s +S
(34)

is used to reconstruct the transfer function with the
commensurate order r =0.25,0.5, 1, respectively.

The results of identification which are obtained
by the generalized Levy method in frequency ranges
from 10 ~> to 10* Hz for r =0. 25,0. 5, 1 are shown in
Fig. 2. Seen from Fig. 2, as the frequency range broad-
ens, the fitting error increases in the low frequency
range. This is also the reason why the weighted itera-
tion method is presented.
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Fig. 2 Real data and results of identification which are
obtained by the generalized Levy method

The results of identification which are obtained
by the weighted iteration method in frequency ranges
from 10~ to 10* Hz for r =0. 25,0. 5, 1 are shown in
Fig. 3. Seen from Fig. 2 and Fig. 3, the weighted itera-
tion method can improve on the drawbacks of the gen-
eralized Levy method in the low frequency range.

This example also shows that we can achieve
better fittings of the frequency response data whose
frequency responses exhibit non-integer order slopes
using the non-integer order transfer function model.

At the same time we can verify that the algorithm
is more stable numerically for » < 1. In our example
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Fig. 3 Real data and results of identification which are
obtained by the iterative improvement method

we verify the matrix reciprocal condition number
(RCOND ). If the matrix is well conditioned,
RCOND is near 1.0. If the matrix is badly condi-
tioned, RCOND is near 0. Results are RCOND =
5.1274 x 107" for r =0.25, RCOND =4. 115 1 x
107 for r =0.5, RCOND =1.417 8 x 10 ™ for r =
1. We find the less the commensurate order r is, the
fewer the condition numbers of the matrix is. So the
algorithm is more stable numerically.

4 Conclusion

Non-integer order systems are a generalization of
the integer systems. These models are more adequate
for description of the dynamical systems. In this paper
only the identification of the non-integer order systems
with commensurate order is presented. How to identify
the general non-integer order systems is still an open
problem.

References

[1] Ljung L. System identification: theory for the user [ M].

Sweden: Prentice Hall, 1987: 168 —194.

[2] Pintelon R, Guillaume P, Rolain Y. Parametric identifica-
tion of transfer functions in the frequency domain: A sur-
vey [J]. IEEE Trans on Automatic Control, 1994,39(11):
2245 —2259.

[3] Battaglia J L, Lay L L, Batsale J C, et al. Heat flow esti-
mation through inverted non integer identification models
[J]. International Journal of Thermal Science, 2000, 39
(3):374 —389.

[4] Darling R, Newman J. On the short behavior of porous in-
tercalation electrodes [ J]. J Electrochem Soc, 1997, 144
(9):3057 —3063.

[5] Poinot T, Trigeassou J C. Identification of fractional sys-
tems using an output-error technique[J]. Nonlinear Dy-
nam, 2004, 38(13):133 —154.

[6] Metzler R, Nonnenmacher T F. Fractional diffusion: exact
representations of spectral functions [J]. J Phys A: Math
Gen, 1997,30(4): 1089 —1093.

[7] Metzler R, Schick W G, Kilian H G, et al. Relaxation in
filled polymers: a fractional calculus approach [J].J Chem
Phys, 1995,103(16): 7180 —7186.

[8] Schiessel H, Metzler R, Blumen A, et al. Generalized vis-
coelastic models: their fractional equations with solutions
[J]1.J Phys A: Math Gen, 1995,28(23): 6567 —6584.

[91 Wang Zhenbin, Cao Guangyi, Zhu Xinjian. Identification
algorithm for a kind of fractional order system [J]. Jour-
nal of Southeast University: English Edition, 2004,20(3):
297 —302.

[10] Hartley T T, Lorenzo F C. Fractional system identifica-

tion: an application using continuous order-distribution
[J]. Signal Processing,2003,83(11):2287 —2300.

[11] Dorcak L, Lesko V, Kostial I. Identification of fractional-
order dynamical systems [ EB/OL]. (2002-04-15) [2006-
03-10]. http: //arxiv. org/abs/math/0204187.

[12] Levy E. Complex curve fitting [J]. IRE Transactions on
Automatic Control, 1959,4(3):37 —43.

FEEHH IS RFERIRPIRTT A

it

T A&

(BATFMEMRKRF AHLFER, &E 210016)

WE 2R T 2 AP SN RA%HRF x——) L Levy sk AR k. 420, B Hin 582 %
8 Levy k474 1358 T &4 KW 2 %9517 69 7 U Levy i K5, 4F 3 ) U Levy i 89 R 2,

P T — AP SRR A T ARG RS, RA AT 49 7 ik 4k

T B AT 89 R

JBhAy 3T T BN A G, RR % T ik, 35 A B3 8645 2K A 3R 5 BUA 30 IR o6 BL 64 R AT 6 S
AR5 BRI AR RN TR R A RPN R AR
K AEERMN SR AEEHMN R P57 L Levy ik mAR &K &

HE 5250231



