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Nonlinear online process monitoring and fault diagnosis
of condenser based on kernel PCA plus FDA
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Abstract: A novel online process monitoring and fault diagnosis method of condenser based on kernel principle
component analysis ( KPCA) and Fisher discriminant analysis (FDA) is presented. The basic idea of this
method is: First map data from the original space into high-dimensional feature space via nonlinear kernel

function and then extract optimal feature vector and discriminant vector in feature space and calculate the
Euclidean distance between feature vectors to perform process monitoring. Similar degree between the present
discriminant vector and optimal discriminant vector of fault in historical dataset is used for diagnosis. The

proposed method can effectively capture the nonlinear relationship among process variables. Simulating results
of the turbo generator’s fault data set prove that the proposed method is effective.
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The turbine generator involves a very complex
process and consists of many subsystems. Among
them, the condenser is considered as one of the impor-
tant parts. The condenser fault will damage the genera-
tor and lead to the breakdown of the power supply. The
economic losses are usually beyond our visualization.
Therefore, it is of great importance to recognize the in-
cipient fault of the condenser as early as possible''. In
the past decade, much research has been done in this
field'"™" .

But the diagnosis of a condenser requires monito-
ring many variables which are highly correlated and the
traditional methods often show poor results when ap-
plied to the turbine generator process. In order to over-
come these shortcomings, a statistical method was con-
sidered to do the process monitoring and fault diagnosis
of the condenser. Based on principle component analy-
sis (PCA), partial least squares (PLS) and canonical
correlation analysis( CVA), the statistical method can
project the data from high-dimensional feature space
into a low-dimensional space and identify important
features of the data. These methods have been used and
extended in various applications'®"”. However, some
complicated cases such as the generator process, PCA,
PLS and CVA perform poorly due to their linear char-
acteristics. To address this problem, a new combination
technique called kernel PCA plus FDA has been devel-
Oped[ll—lz]-

The basic idea of kernel PCA plus FDA is to non-
linearly map the data into high-dimensional feature
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space, in which the data has a linear structure, then per-
forms FDA in the feature space. It uses “kernel tricks”
to solve the computation of independent projection di-
rections in high-dimensional feature space and ulti-
mately convert the problem of performing FDA in fea-
ture space into a problem of implementing FDA in the
kernel principal component analysis ( KPCA) trans-
formed space!” . Its essence is equivalent to kernel
Fisher discriminant analysis (KFDA), but the algorithm
is more transparent.

In this paper, a novel nonlinear combination
process monitoring and fault diagnosis method of con-
denser based on kernel PCA plus FDA is proposed. If a
fault occurs, the similar degree between the present dis-
criminant vector and the optimal vector of fault in a
historical dataset is used for diagnosis. The simulation
results show that the proposed method is effective.

1 Principles of KPCA plus FDA

1.1 Fundamentals
Suppose that a set of M training samples x,, x,,

..., X,, take values in an n-dimensional space. /; is the
.

number of training samples of class i and satisfies 2 [,

i=1
= M, c is the number of classes. Let the input space X
be mapped into the feature space F:
O: X—F x—P(x) (D)
The idea of kernel FDA is to solve the problem of
FDA in the feature space F, thereby yielding a set of
nonlinear discriminant vectors in input space. This can
be achieved by maximizing the following Fisher criteri-
on:

70 (2)
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where S¢ and S are the between-classes and total
scatter matrices defined in feature space F:

p l - g T
S? =M;li(uip —uy)(u] —ug)
s? =i2((p(xi) —ud)(D(x) —ul)T (3)
i=1

S’ =$Z(<p<xi) —u) (P(x) —ug)" (4)
i=1

where u? is the mean vector of the mapped training
samples of class i and u{ is the mean vector across all
mapped training samples'"' ™'
1.2 Kernel Fisher optimal discriminant vectors
The optimal discriminant vectors with respect to
the Fisher criterion are actually the eigenvectors of the
generalized equation Sy¢ = AS”¢. Since any of its
eigenvectors can be expressed by a linear combination
of the observations in feature space, we have

M
¢ =Y adx) =0a (5)
j=1
where Q=D (x,), ..., (x,,)] and @ = {aq,, ...,
aM}T.
Substituting Eq. (5) into Eq. (2), the Fisher cri-
terion is converted to'"’!

T(KWK) a
Ja) =2 EWDa 6
(@) o (KK (6)
where the matrix K is defined as
K=K-1,K-K1, +1,K1,, (7)

... 1
Where,leﬂl/{f : ,K=Q"Q is an M
1 .. 14,
x M matrix, and its elements are determined by
K, =®(x) " ®(x) = (P(x) - D(x))) =k(x,, )
(8)
where k(x,y) is the kernel function corresponding to
a given nonlinear mapping @, and W =diag(W,, ...,
W,), W,is an [; x [, matrix with terms all equal to
1/ lj. Thereby, W is an M x M block diagonal matrix.
Now, let us consider the QR decomposition of
matrix K. Suppose that y,, v,, ..., v, are K’ s
orthonormal eigenvectors corresponding to m (m is
the rank of K) nonzero eigenvalues A, = A, =...=
A,,- Then, K can be expressed by K = PAP", where P
=(Yis V25 o-s ¥) and A =diag( A, A,, .. A,).
Obviously, P'P =1, where I is the identity ma-
trix. Substituting K = PAP" into Eq. (6) and let

B=AP'a 9)

we have
oy - AP AP WPAD (AP
(A*P'a)"A(A*P"a)

(10)
Then, Eq. (10) becomes

B'S.B
J(B) =% (11)
P =pisp
where
S, =ATP"WPTAZ, S, = A (12)

It is easy to know that S, is positive definite and
S, is semi-positive definite. Thus, Eq. (11) is a
standard generalized Rayleigh quotient. By maximi-
zing this Rayleigh quotient, we can obtain a set of op-
timal solutions 8,, B,, ..., B,, which are actually the
eigenvectors of S,”' S, corresponding to d(d<c - 1)
largest eigenvalues.

From Eq. (9), we know that for a given B, there
exists at least one a satisfying & = PA ~"’B. Thus, af-
ter determining B,, 3,, ..., B,, we can obtain a set of
optimal solutions @, = PA~"°B,(j =1,2, ..., d) with
respect to the criterion in Eq. (6). Thereby, the opti-
mal discriminant vectors with respect to the Fisher cri-
terion in Eq. (2) in feature space are

¢, =0a;=QPA B, j=1,2,...d (13)
1.3 Essence of KFD transformation: KPCA plus
FDA

Given a sample x and its mapped image &(x),
we can obtain the discriminant feature vector z by the
following KFD transformation

2= D(x) (14)
where ¢ = {¢@,, @5, -, @0, } = (OPA ™) {B1sBss ---s
B.).

The above transformation can be divided into two
items

¥ =(QPA ™) d(x) (15)

2=G'y, G=(B,B1 --»Bs) (16)
Let us consider the transformation in Eq. (15) first.

Since @ =[D(x,), ..., D(x,) ], P={vi.vss s ¥}
and A =diag(A,, A,, ..., A,,), Eq. (15) can be rewrit-

ten as
T
Y1 Ym T
y= s — | (D(x,), ..., D(x,)) DP(x) =
(\/ /\I vV /\m) l
T
71 Ynl
y s ——| [k(x,,x), ..., k(x,,,x)] (17)
(\/ /\I % /\m) : Y
Since y,, v,, ..., v,, are K’ s orthonormal eigenvectors
and A, A,, ..., A,, are the associated nonzero eigen-

values, the transformation in Eq. (17) is exactly the
KPCA transformation''®, which transforms feature
space F into Euclidean space R".

Let us view the issues in the KPCA-transformed
space R". Looking back at Eq. (11) and considering
the matrices S, and S, within the function J(B8), it is
easy to verify that they are actually the between-class
and total scatter matrices in the KPCA-transformed
space R". Since the expression of S, in Eq. (12) is not

so intuitive, we can construct it directly in R” based on
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KPCA -transformed features

_ 1< _ — T
&_M;umumMu@ (18)

where [, is the number of training samples in class i,
u, is the mean vector of the training samples in class
i, and u, is the mean vector across all training sam-
ples.

Since S, and S, are the between-class and total
scatter matrices in the KPCA-transformed space R”,
the function J(B) is actually the Fisher criterion in
such space and its stationary points 3,, B,, ..., B, are
the associated Fisher optimal discriminant vectors.
Correspondingly, the transformation in Eq. (16) is es-
sentially the Fisher linear discriminant transformation
in the KPCA-transformed space.

So, the essence of KFD has been revealed and it
is equal to KPCA plus FDA. KPCA is first employed
to reduce the dimension of feature space to m, and
then FDA is used for further feature extraction in the
KPCA-transformed space R™'"'™".

2 Online Monitoring and Fault Diagnosis
Strategy using KPCA plus FDA

Process monitoring methods based on PCA moni-
tor variables in the principle component and residual
space using Hotelling” s 7° and Q statistics. The es-
sence of the T° statistic is a kind of weighted statistical
distance''”’. The process monitoring method based on
kernel PCA plus FDA also uses distance as a statistic
and it compares the Euclidean distance of the optimal
kernel Fisher feature vector between present data and
reference data to perform process monitoring.

Fault diagnosis was performed using contribution
plots in traditional statistical methods. When a fault
occurs, through the contribution rate of variables, we
can find the root cause of the fault. However, in high-
dimensional feature space, it is difficult or even im-
possible to find an inverse mapping to the original
space to calculate the contribution rate of variables to
the fault. So, the monitoring method based on kernel
PCA plus FDA performs fault diagnosis not using
contribution plots but by using pattern matching tech-
nology. As we know, in KPCA plus FDA analysis, the
optimal kernel Fisher discriminant vectors extracted
from different faults are different. Through calculating
the similar degree between the present kernel feature
vector and the optimal kernel vectors of the faults, we
can decide that the one in the historical dataset, which
is mostly similar to the present optimal feature vector,
can be recognized as the present fault. In practical ap-
plication, we set a diagnosis limit 7. If the similar de-
gree between the present discriminant vector and the
optimal vector of each fault is smaller than 7, a new

fault can be recognized. We can discriminate the fault
according to our experience and add it to the historical
fault data set.
2.1 Definition of confidence bounds

Once a model has been developed that reflects the
normal operation region, it is necessary to detect any de-
parture of the process from its standard behavior. That
is, we must calculate the confident limit value to deter-
mine whether the process is in control or not. In PCA or
PLS monitoring, Hotelling’ s 7° analysis and Q charts are
effective tools for extracting the critical features of the
data. These analyses are based on the assumption that the
probability density functions of the latent variables fol-
low a multivariate Gaussian distribution. However, con-
trary to this assumption, Martin and Morris'™ reported
that the latent variables in many industrial processes
rarely have a multivariate Gaussian distribution through
tests for multivariate normality on the scores. An alterna-
tive approach to defining the nominal operating regions
is to use data-driven techniques such as non-parametric
empirical density estimates using kernel extraction ™.

The latent variables in the KPCA plus FDA mo-
nitoring method also do not follow a Gaussian distri-
bution. So, we can use kernel density estimation to
calculate the confidence limits of the D statistic.

A univariate kernel estimator with kernel K is de-
fined by

ﬂn=$iqﬁﬁ) (19)

where x is the data point under consideration, x; is an
observation value from the dataset, i is the window
width, »n is the number of observations, and K is the
kernel function.

The control limit used in FDA monitoring charts
in the KPCA-transformed feature space can be ob-
tained using kernel density estimation as follows.
First, the D values from normal operating data are re-
quired. Then, the univariate kernel density estimator is
used to estimate the density function of the normal D
values. The point, occupying 99% area of density
function, can be obtained and becomes the control
limit of normal operating data''*"""'. We denoted it
as D",

2.2  Outline of online process monitoring and
fault diagnosis using KPCA plus FDA

Step 1  Select the appropriate nonlinear kernel
function and map the reference dataset X, and new
sample dataset X, ., from original space into high-di-
mensional feature space. Acquire the kernel reference
dataset £, and the kernel sample dataset &, .

Step 2 Construct the centralized inner product
matrix K using Eq. (7) and calculate its orthonormal
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eigenvectors y,, v,, ...
nonzero eigenvalues A, A,, ..
transformation using Eq. (17).

Step 3 Construct the between-class scatter ma-
trix S, using Eq. (18) and the total scatter matrix S, =
diag( A, A,, .
B .. corresponding to the largest eigenvalue.

Step 4  Acquire the optimal kernel Fisher dis-

, ¥ corresponding to m largest
., A,,- Carry out KPCA

.. A,). Calculate S7' S, s eigenvector

criminant vector ¢, using ¢, = OPA B

Step 5 Project the kernel reference dataset &,
and the kernel sample dataset £,  to the optimal ker-
nel discriminant vector ¢, and acquire the kernel op-
timal feature vectors 7' ; and T ..

Step 6  Calculate the Euclidean distance be-
tween the two kernel fisher feature vectors via D =
T =T, IP.

Step 7 If the statistic D is larger than the con-
trol limit D", the fault may occur and calculate the
similar coefficient S to diagnose the type of faults.

T
— ¢opt¢i ( 20)
[ @ope I+ ;|
where ¢; is the optimal kernel Fisher discriminant vec-
tor of the present data set, and ¢,, is the optimal ker-

nel Fisher discriminant vector of the fault data set (as-
suming that there are n kinds of faults in the fault data
set). From Eq. (20), we know that the similar
coefficient S is the cosine value of the two optimal
kernel fisher vectors’ angle.

3 Application Studies

As indicated in Ref. [2], there are 21 kinds of
typical faults in a condenser. The variables which are
related to the faults are of 33 kinds. A complete list of
the variables can be found in Ref. [2]. We select all
the 33 kinds of variables as monitoring variables and
nine kinds of typical faults for simulation. The simula-
tion faults are listed in Tab. 1. The data come from the
historical data set of some 300 MW turbine genera-
tors. We collect 600 samples including fault 2 as test
data. The fault is introduced at sample 300 and is fol-

lowed to the end of the process.
Tab.1 Typical faults of condenser

Fault ID Fault description

Recycle pump fault

Water filling in condenser

Cooling pump fault

Walling up of cooling pipe in condenser
Stream pump fault

Cooling tower fault

Vacuum pump fault

Smudginess of cooling pipe in condenser

O 00 NN R W N =

Heater pipe bursting

We select a group of normal data and three
groups of fault data (fault 1, fault 2 and fault 3) from
the historical data set and extract the first and the sec-
ond optimal discriminant vector using Fisher discrimi-
nant analysis. Then we project the data to the optimal
discriminant vector and obtain a scatter plot of the
first and the second feature vector in the original
space. As shown in Fig. 1, only fault 2 can be differ-
entiated clearly from the normal data and the other
faults, but it cannot differentiate fault 1 and fault 3
from the normal data. This is because there exist com-
plicated nonlinear relationships among variables. FDA
is a linear method intrinsically, so it shows poor per-
formance in dealing with data with strong nonlineari-
ty. The scatter plot of the first kernel feature vector
and the second one via FDA in the KPCA transformed
space is shown in Fig. 2. It can be seen from the fig-
ure that after projecting data to the high-dimensional
feature space through selecting the appropriate kernel
function, the KPCA plus FDA method can easily dif-
ferentiate among different data. We used the RBF
function as the selected kernel function.
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Fig.1 Scatter plot in original feature space
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Fig.2 Scatter plot in high-dimensional feature space

From the above simulation results we know that
the kernel PCA plus FDA method (we also can call it
the kernel FDA method) can effectively extract the
feature vector of nonlinear data and differentiate data
belonging to different classes. So it is possible for us
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to perform process monitoring using Euclidean dis-
tance between the optimal kernel Fisher feature vec-
tors of different data sets as a statistic.

In order to demonstrate the predominance of the
KPCA plus FDA monitoring scheme, three monitoring
approaches were investigated using the recorded data
set. PCA and KPCA were applied first, followed by a
comparison to the KPCA plus FDA monitoring meth-
od.

When we do online monitoring using KPCA plus
FDA. We first calculate a 99% confidence limit D *
via kernel density estimation. The PCA and KPCA
monitoring charts are shown in Fig. 3 and Fig. 4, re-
spectively. From Fig. 3, we know that the 7° and Q
statistic of PCA can detect the occurring fault, but
they fall below the 99% control limit after about sam-
ple 390 in the T° chart and sample 410 in the Q chart.
However, the monitoring results of applying KPCA to
the same process data are given in Fig. 4, which shows
relatively fast and clear fault detection results in com-
parison to PCA, but it is still not satisfactory.
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Fig.3 PCA monitoring result of case 2
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Fig.4 KPCA monitoring result of case 2
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The monitoring result of fault 2 using kernel
PCA plus FDA is shown in Fig. 5. From the figure, we
know that the statistical distance increases sharply
when the fault occurs at sample 300 and exceeds the

99% control limit. Then it calculates the similar de-
gree between the present optimal discriminant vector
and the optimal vector of fault in the historical dataset
to perform fault diagnosis. As shown in Fig. 6, the
present optimal kernel Fisher discriminant vector is
more similar to fault 2 than others and the similar val-
ue is 0. 95. So, we can determine that the fault is from
water filling in the condenser (fault 2).
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0.10

99% control limit
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Fig.5 Monitoring result of case 2
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Fig.6 Similar degree of case 2 in historical database

4 Conclusion

A novel process monitoring and fault diagnosis
method of a turbine generator based on kernel PCA
and FDA was proposed. It first mapped the data from
the original space into high-dimensional KPCA-trans-
form space via nonlinear kernel function and then ex-
tracted the optimal kernel Fisher feature vector and
discriminant vector to perform process monitoring and
fault diagnosis. The proposed method can effectively
capture the nonlinear relationship in process variables.
It is evaluated by the application to the turbine genera-
tor historical fault data set and its effectiveness is
demonstrated.
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