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based on heat and moisture transfer in porous medium
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Abstract: To simulate the concrete shrinkage in varying temperature and moisture environments, a simulate

procedure comprising an analytical process and a finite element analysis is proposed based on the coupled partial

differential equations describing heat and moisture transfer in a porous medium. Using the Laplace

transformation method and transfer function to simplify and solve the coupled equations in Laplace domain, the

moisture and temperature distribution in time domain are obtained by inverse Laplace transformation. The

shrinkage deformations of concrete are numerically simulated by the finite element method (FEM) based on the

obtained temperature and moisture distribution. This approach avoids the complex eigenvalues, coupling

difficulty and low accuracy found in other solving methods, and also effectively calculates the moisture induced

shrinkage which is almost impossible using familiar FEM software. The validity of the simulation procedure is

verified by Hundt’ s test data. The results reveal that the proposed approach can be considered a reliable and

efficient method to simulate the coupling moisture and temperature shrinkage of concrete.
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Concrete shrinkage due to temperature and mois-
ture conditions will develop simultaneously under nor-
mal conditions. Some properties of concrete, such as
thermal conductivity, specific heat capacity, and even
elastic modulus, are affected by moisture variations.
Similarly, moisture diffusivity and surface water
evaporation will fluctuate with moisture conditions.
Nevertheless, it would be more practical to study the
volume stability of concrete using a coupled tempera-
ture and moisture model, provided this model concept
would lead to accurate predictions of the deformations
in the concrete structure under actual environmental
conditions.

Luikov has proposed the governing equations for
coupling heat and mass transfer in porous materials.
Quite a few researchers have given different solution
methods. Mikhailov and Ozisik had given the analytical
solutions based on the classical integral transform
method'". Gaur and Bansal used the periodic approxi-
mate method to obtain closed-form solutions'”'. Chang
and Chen applied a decoupling technique to coupled
governing equations'”' . Cheroto et al. proposed a modi-
fied lumped system analysis approach to get approxi-
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mate solutions'* . But the methods referred to are either
complicated or incorrect'™. The modified Luikov
equations and the transfer function are applicable to
simulate the temperature and moisture distribution in a
concrete'”'.

In this paper, the thermal-drying shrinkage of con-
crete is simulated by means of the analytical method
and the FEM method based on the coupled heat-mois-

ture transfer equations in a porous medium.

1 Coupling Heat-Moisture Transfer Equations

1.1 Theoretical framework

Material properties are considered to be uniform
throughout the material body. The requirements of
mass and energy conservation during the transfer
process lead to the following partial differential equa-

tions:
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where p is the density of the material, ¢, is the specific
heat of constituent, 7 is the temperature, A is the ther-
mal conductivity, r is the phase change factor, M is
the moisture content, &, is the heat of phase change,
D is the moisture diffusion coefficient, and § is the
thermal gradient coefficient.

Egs. (1) and (2) express the energy and mass
conservation requirements, respectively. This can be
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simplified into
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where L = A/(pc) v =rh,/c, 0 = pc,D,, S/(A +
pD. 6rh,),and D =AD,/(A +po3rhlV).
Egs. (3) and (4) describe the joint time-depend-
ent heat-moisture coupling transfer process. Fig. 1 is

(3)

the schematic diagram of a concrete specimen, the
thermal-drying shrinkage of which will be studied in
this paper.
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Fig.1 Schematic diagram of the concrete specimen

1.2 Boundary conditions

At the boundaries of the domain, the heat of
phase change becomes a part of the energy balance,
and the mass diffusion caused by the temperature and
moisture gradients affects the mass balance. The asso-
ciated hygro-thermal boundary and initial conditions

s 3
can be given as'’
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where « is the heat transfer coefficient, p is the ratio
of vapor diffusion coefficient to coefficient of total
moisture diffusion ( evaporation number), ¢ is the
moisture transfer coefficient, and the subscripts i and o
indicate the inner and exterior surfaces, respectively.
Egs. (5) and (6) represent the heat flux in terms of
convection heat transfer and phase-change energy
transfer, expressing the heat equilibrium at internal

and exterior surfaces. Eqs. (7) and (8) represent the
moisture balance at the two surfaces.
The initial temperature and moisture values in
concrete are given by
T(x,0) =T, (9)
M(x,0) =M, (10)

2 Solution Procedure

The complete procedure for the numerical simu-
lation of concrete deformations consists of three steps.
First, the coupled temperature and moisture distribu-
tion is determined. Secondly, the stress induced by
moisture distribution is calculated by relevant equa-
tions. Finally, the thermal-drying shrinkage of concrete
resulting from the moisture and heat gradient is com-
puted.

2.1 Temperature and moisture distribution

Laplace transformation on time variable ¢ is ap-
plied to Eqs. (3) to (10). Consequently, the corre-
sponding equations become
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where s is the Laplace transformation parameter.
Next, a transfer function ¢ (x, s) is introduced
that satisfies

_ . T,
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Consequently, Eq. (11) is satisfied, while Eq.

(12) becomes
4 2 2
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Thus, the heat and moisture transfer coupling dif-
ferential equations are transformed into a single
fourth-order ODE ( Eq. (21)), which can readily be
solved.

Assume that ¢(x, s) has the following form

p(x,5) = Y £i(5)s™ (22)
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Obviously, g; = — ¢, and g, = — q,.
The coefficients ,(s) (i =1, 2, 3,4) are deter-
mined by Egs. (13) to (16), and can be written as
K{(s) =Q (23)

When the boundary conditions are defined as

70,1 =T, T(L,t) =T,,M(0,t) =M,, M(l, 1) =M
K and Q can be expressed as
L L L L
14 e,l %eql %e,l %efp‘/
K=
1 P p 1 p 1 2
T’[{\ T’qz T’% T’qz
1 2 \ari i 2 \a-rd L 2\ .l L 2\ . -pl
A ) S ) S
(24)
Ti_To To_To Mi_Mo Mo_Mo !
0= ]
s s s s
(25)

The solution of Eq. (23) can be determined by
Cramer’ s rule, and is expressed as
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The temperature and moisture solutions of Egs.
(19) and (20) are obtained in the Laplace domain.
They can be formulated as
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Next, applying inverse Laplace transformation to
Egs. (27) and (28) yields the temperature and mois-
ture solution in time and space domains. They can be
expressed as
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2.2 Moisture distribution induced stress

The deformations induced by temperature chan-
ges can be calculated by direct application of tempera-
ture loads to the nodes in the FE analysis. On the con-
trary, with the current FEM approach it is impossible
to directly apply moisture loads to the nodes.

Drying shrinkage is induced by moisture loss
from the pore structure after the concrete has attained
final set through evaporation and diffusion. According
to the Kelvin-Laplace equation, there exists a relation-
ship between the negative pore fluid pressure and the
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internal relative humidity within the pore structure,
which can be expressed as

o = A B (31)

Vm
where ¢ is the negative pore fluid pressure, H, is the
internal relative humidity, R is the universal gas con-
stant, 7" is the temperature, and v,, is the molar volume
of water.
A relationship between the hydrostatic pressure
and the associated strain is proposed by Mackenz-

ie'®”" It can be expressed as

e=r.(3x 3¢ (32)
where ¢ is the linear strain, p, is the average hydro-
static pressure (i.e., equal to o from the Kelvin-La-
place equation), K is the bulk modulus of porous sol-
id, and K is the bulk modulus of the solid skeleton of
the material. When Eq. (32) is used for a partially sat-
urated porous medium like concrete, it should be mul-
tiplied by a saturation factor'® . Concrete is a compos-
ite material in which the aggregate is volume stable;
its grains restrain the shrinkage of the cement paste.
Eq. (32) has been modified again'®, therefore, to ac-
count for the volume fraction of aggregate

1 1\V
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where § is the saturation factor, and V /V, is the vol-

(33)

ume fraction of the paste in the concrete. The bulk
modulus for a porous medium such as concrete is gov-
erned by the porosity and the elastic moduli of the
concrete'”!, namely ¢, K, and G,, whereby G, and ¢
are the shear modulus and porosity, respectively. So,
K c(3K, +4G,)
K= T4,
The stress on each node can be imagined as the

(34)

arithmetic product of strain and elastic modulus. Con-
sequently, the stress induced by moisture changes can
be calculated by
_ 4GS L
4G,(1 -¢) +3K, 3K,v,, V
2.3 Concrete shrinkage
Once the temperature and moisture loads have

O

been applied to the element’ s nodes, the shrinkage de-
formation of concrete can be numerically simulated by
the FEM method.

3 Case Analysis

3.1 Brief introduction of Hundt’s test
In order to validate the applicability of the pres-
ent simulation procedure in predicting the coupled

heat and moisture transfer in concrete and the induced
thermal-drying shrinkage of concrete, we applied the
method to a test case which was carried out by Hun-
dt'"®. Hundt investigated different transport phenomena
in six concrete specimens over a time period of three
years, and the experimental results are suitable to as
benchmarks in verifying the validity of numerical
models. In the experiment, a prismatic concrete speci-
men of a size of 2.4 m x0.4 m x0. 4 m was used and
the concrete was cured for 28 d before test. The speci-
men was isolated with regards to thermal as well as
moisture flux along the surfaces situated alongside to
simulate 1D-conditions ( see Fig. 2). It was subjected
to a temperature of 80 ‘C at one end and to a rapid de-
crease of external relative humidity (45% ) at the oth-

er end.
et 2.4m
[
Face 1 Face 2:
cealed, |2 Ty=20C T o0
T=80 Cllo My=10.5 % H, =45%
.

]

Adiabatic conditions

Fig.2  Schematic of layout and boundary conditions of
Hundt’ s test on a concrete specimen

At an internal relative humidity below approxi-
mately 45% , capillary menisci are not stable and the
Kelvin-Laplace equation is not reasonable for express-
ing the moisture induced stress. While in Hundt’ s
test, even though air relative humidity is 45% , the rel-
ative humidity inside the concrete rarely drops below
50% ", Therefore, it is obvious that the simulation
procedure is applicable in this case.
3.2 Comparison of numerical results and Hundt’s

test data

According to Egs. (5) to (10), the boundary
conditions in this case are expressed as Egs. (36) to
(39). The initial conditions and some basic parameters
are [=2.40, T, =20 C, M, =10.5,T, =80 C, T, =
20 C, M, =3.5% (calculated from H, =45% ). In the
simulation analysis, the concrete specimen is dis-
cretized by 8-nodes block elements and a constant
time step of 12 h is used.
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The numerical results are compared with the ex-
perimental data of Hundt’ s test between the moisture
content ( volume ratio) , the temperature and the length
changing of the specimen (see Figs.3 to 5). It should
be noted that the simulated moisture distribution is the
mass content of moisture directly from the analytic so-
Iution of heat and moisture transfer equations accord-
ing to the boundary conditions. In order to compare
the numerical results to Hundt’ s test data, the numeri-
cal results of mass content were changed into volume

content before comparison with the experimental re-
sults of Hundt’ s test.
12
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Fig.3 Comparison of numerical and experimental mois-

ture distribution
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Fig.4 Comparison of numerical and experimental tem-
perature distribution
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Fig.5 Comparison of numerical and experimental length

changing of the specimen within the first 400 d

Obviously, Figs. 3 to 5 show a relatively good
correlation between numerical and experimental data.
The simulation procedure proposed in this paper is re-
liable and suitable for thermal-drying shrinkage simu-
lation of concrete.

4 Conclusion

The simulation procedure proposed in this paper
is based on the coupling of heat and moisture transfer
effects in porous concrete. It encompasses an analyti-
cal solution of temperature and moisture distribution in
concrete, a numerical simulation of the stress fields in-
duced by moisture and heat distribution, and the math-
ematical computation of thermal-drying shrinkage de-
formation in concrete specimens. The validity of the
method of analysis was verified by comparing Hundt’
s test data with its analytical results. The results reveal
the rationality and efficiency of the coupling model
and the simulation process.

The heat and moisture transfer inside porous ma-
terials such as concrete is a complex phenomenon.
More theoretical investigations are needed to be car-
ried out for more insight into the variation of the heat
and moisture transfer for different types of concrete
and in various environmental conditions.
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