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Feature extraction and damage alarming using time series analysis
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Abstract: Aiming at the problem of on-line damage diagnosis in structural health monitoring (SHM), an

algorithm of feature extraction and damage alarming based on auto-regressive moving-average (ARMA) time

series analysis is presented. The monitoring data were first modeled as ARMA models, while a principal-

component matrix derived from the AR coefficients of these models was utilized to establish the Mahalanobis-

distance criterion functions. Then, a new damage-sensitive feature index D, is proposed. A hypothesis test

involving the t-test method is further applied to obtain a decision of damage alarming as the mean value of D,

had significantly changed after damage. The numerical results of a three-span-girder model shows that the

defined index is sensitive to subtle structural damage, and the proposed algorithm can be applied to the on-line

damage alarming in SHM.
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Structural health monitoring (SHM) has now re-
ceived considerable attention in the civil engineering
community in the past few years. The use of in-situ,
nondestructive sensing and analysis of structural char-
acteristics, including the structural response, for the
purpose of detecting changes that may indicate damage
or degradation is referred to as SHM'"", which involves
the data acquisition, the extraction of damage-sensitive
features from these data, and the statistical analysis of
these features to determine the current state of the sys-
tem’ s health. The damage diagnosis based on on-line
monitoring data is one of the key issues in the SHM
process, and most currently proposed methods utilize
the changes in modal parameters ( frequencies, mode
shapes, modal curvature, flexibility, etc. ) or use the fi-
nite element (FE) model updating techniques to identi-
fy damage. Recent research indicates that the vibration-
based damage diagnosis is essentially a problem of sta-
tistical pattern recognition'>™'. From this point of view,
methods have been developed that utilize signal pro-
cessing techniques and statistical analysis in extracting
damage-sensitive features directly from on-line monito-
ring data. It is noted that neither sophisticated FE mod-
els nor modal parameters are employed in such a statis-
tical pattern recognition approach. Thus, these methods
avoid the shortcomings of model-dependence in tradi-
tional damage diagnosis, because high-fidelity FE
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model and sophisticated modal analyses often require
labor intensive tuning and always result in significant
uncertainties caused by various errors.

In this paper, a novel algorithm of damage-sensi-
tive feature extraction and damage alarming is presen-
ted based on auto-regressive moving-average (ARMA)
time series analysis. The numerical results of a three-
span-girder model show that the new damage-sensitive
feature index defined in this paper is sensitive to subtle
structural damage and the proposed methods can be
used for structural on-line damage alarming. The pri-
mary objective of this study is to identify the existence
of damage, and the localization and quantification of
damage are not addressed in this paper.

1 Description of the Algorithm

1.1 Time series modeling of monitoring data

The time series modeling algorithm involved to
analyze the statistical properties of dynamic data sys-
tems is one of the key branches in statistics and proba-
bility'*. In the SHM, the monitoring data obtained by
in-situ sensors is a typical time series. Thus, damage
detection can be performed using the time series mod-
eling algorithm of monitoring data measured from a
structure before and after an event. Furthermore, this al-
gorithm is solely based on signal analysis of output da-
ta making this approach very attractive for the develop-
ment of on-line SHM" ™. In this study, simulated mo-
nitoring data are modeled as ARMA time series mod-
els, and a novel algorithm of feature extraction and
damage alarming is presented, subsequently based on
the coefficients of ARMA models.

First, all the monitoring data are standardized prior
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to any analysis hereafter, such that
X ij( t) M

xij(t) = o

- (D

where X;;(7) is the j-th stream of monitoring data ob-
tained from sensor i, and Wi and o; are the mean and
standard deviation of X (7), respectively. This stand-
ardization procedure is applied to all the monitoring
data in this paper.

Once the initial data pre-processing is complete,
an ARMA (p, g) model with p auto-regressive ( AR)
terms and ¢ moving-average (MA) terms is construc-
ted as

X () = Y @1 k) + Y O, (1 —k) +,(1)
(2)

where x;(1) is the standardized monitoring data; ¢, and
0, are the k-th AR and MA coefficients, respectively;p
and g are the model orders of the AR and MA proces-
ses, respectively; and g, (1) is the residual term. It is
noted that the ARMA model consists of two parts, one
is the auto-regressive part representing that x, (1) is af-
fected by its previous values, and the other is moving-
average which represents that x;(7) is also affected by
previous noise interference. Backward shift operator B
is applied to let ka,.j(t) =x;(t - k), thus Eq. (2) can
be written symbolically as
¢(B)x,(1) = 0(B)e,(1) (3)
where ¢ and @ are the p-th and the g-th degree polyno-
mials. From Eq. (3), it can be obtained that
Zihresd 4
The ARMA modeling process can be considered
as the output x;(7) from a linear filter, whose transfer
function is the ratio of two polynomials §( B) and
@(B), when the input is £;(). Thus, the estimation for
the terms and coefficients of the ARMA model is es-
sentially a process of system identification.
The spectrum of ARMA(p, ¢) model is

x;(1) =
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where ¢ is the variance of system input &, (7). It can
be seen in Eq. (5) that the roots existing both in the
numerator and the denominator of the spectrum S(f)
indicate the zeros and poles of the system. The equa-
tion §(B) =0 and ¢(B) =0 are thus called the charac-
teristic equation for the process.

When the factor analysis is applied to the charac-
teristic equation, it can be obtained that

e(B) =(1 =AB)(1 =A,B)...(1 —=A,B) =

P

[Tt -1B =0 (6)

0(B) =(1 —9,B)(1 =n,B)...(1 —q,B) =
[T(1t-mB) =0 (7)
k=1

where A, and 7, are the characteristic roots of the AR
and the MA processes, respectively. From the view of
the system identification theory, A, represent the poles
of transfer function representing the natural characteris-
tics of system, and 7), are the zeros of transfer function
representing the relationship between the system and
the external environment.

The innovation algorithm is used for estimating
the coefficients of the ARMA models. The optimal
model order is obtained using Akaike information crite-
ria. This criteria consists of two terms, one of which is
a log-likelihood function and the other penalizes the
number of terms in the ARMA model. Also, a cross
validation analysis is carried out to check the accuracy
of the results. The details of the estimation of the mod-
el are given in Ref. [4].

1.2 Feature extraction and damage alarming

Feature extraction is the process of identifying
damage-sensitive properties derived from the measured
monitoring data that allows one to distinguish between
the undamaged and damaged structures. Generally
speaking, systematic differences between time series
from the undamaged and damaged structures are nearly
impossible to detect by eye. Therefore, other features of
the monitoring data must be extracted for damage
alarming.

As discussed in section 1. 1, the coefficients of the
AR part of the ARMA model can represent the natural
characteristics of the system. Thus, it indicates that the
AR coefficients can be used in feature extraction. In
this paper, the new damage-sensitive feature index and
damage alarming methods are presented as follows:

(D Populate a database with signals from the un-
damaged structure at each sensor location. Then, divide
these data into two parts. One is used as “the training
database” named S, and the other is used as “the refer-
ence database” named S,. Meanwhile, obtain data from
the unknown conditions of the structure and make these
data as the third database named S;. Let n,, n, and n,
be the number of samples in S,, S, and S, respective-
ly.

(@ Fit an ARMA(p, g) model to all data samples
in database S,, S, and S;.

@ Let the j-th AR coefficients of all the ARMA
(p, q) models in set S;(i =1,2,3) be the vector X;(j =
1,2, ..., p). Then, the principal component analysis
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(PCA) is applied to the matrix X = {X,, X,, ..., X, }. It
obtains the k-th principal component of the matrix X as
Y, =e, X = ¢, X, +e,X, +... +¢,X,

k=1,2,...,p (8)
and
var(Y,) =e,3e, = A, k=12, ..p
cov(Y,,Y,) =e e, =0 k#1 }

(9)
where 3 is the covariance matrix of X, A, =X, =...=
A, and e, e,, ..., e, are the characteristics roots and
corresponding eigenvectors of 3.

@) Select the prior m principal-components (m <
p, m is usually set at 2 to 4, then these prior m princi-
pal-components can hold about 80% to 90% of the to-
tal information of matrices X) from the results in step
3 to perform data compression. Thus, it gets n, X m, n,
xm and n; x m principal-component matrix from S,
S, and S;, respectively.

() Let the n, x m principal-component matrix be
the m-dimensional population of G with mathematics
expectation of u and covariance matrices of 3. The
Mahalanobis-distances'® of m-dimensional vector x, (i
=1,2,...,n,and i =1,2, ..., n;) from the other two
principal-component matrix to the m-dimensional pop-
ulation of G are defined as the damage-sensitive feature
(DSF) index:

Do =[(x -3 (x w17 (10)

(6 Determine the statistical significance in the
differences of mean values of the pre- and post-event
data to report damage alarming. If wuj damaged and
D, undamaged ATE defined as the mean values of the Dy
obtained from the damaged and undamaged cases, re-
spectively, then a hypothesis t-test may be set up as
follows to determine if their differences are significant:

Hy: i, damagea = M0, undamagea

H] :lu’D, damaged ;é/-“D, undamaged ( 11)
where H, and H, are the null and alternate hypotheses,

respectively. H, represents the undamaged condition
and H, represents the damaged condition. The signifi-
cance level of this test is set to 0. 05.

Fig. 1 shows the flowchart of the feature extrac-
tion and damage alarming processes presented in this
paper using the ARMA time series modeling algorithm
and statistical analysis.

2 Application Results

In order to test the validity of the presented algo-
rithm, results from the numerical simulation of a uni-
form beam model containing some subtle damage are
used. The model is a three-equal-span girder (see Fig.
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Fig.1 Flowchart of feature extraction and damage alarming

2) with the span length of L =10 m. And the model is
meshed into 10 elements in each span. Some other im-
portant parameters of the model are: the Young’ s mod-
ule E =2 x 10° MPa, the density p =7 850 kg/m’, the
section area A =1.671 x 10~ m?, and the section iner-
tia moment 7 =1. 652 x 10 ~° m*.
Damage pattemn 3
4 10\ 17 19 27 30

[T T T I )T T T JT T (T )T T T TTTTTTTTT]

e = o O

a  Damage b Damage ¢ d
pattern 2 pattern 1

Fig.2 [Illustration of a three-span-girder model with dam-
age patterns 1 to 3

A crack damage is simulated with an equivalent
sub-beam having a reduced Young’s module suggested
in Ref. [9]. Thus, damage is simulated by reducing the
Young’ s modules of elements, resulting in a loss of
stiffness. Considering the symmetry of the three-span-
girder model, damage patterns are designed in three
different positions but with the same damage level.
Damage patterns include:

(D Damage pattern 1: reduce 10% of the Young’s
module of the two elements near the center of middle-
span;

(2) Damage pattern 2: reduce 10% of the Young’s
module of the two elements near the center of left-side-
span;

(3 Damage pattern 3: reduce 10% of the Young’ s
module of the two elements near restriction b.

Tab. 1 shows the prior five orders of natural fre-
quencies of undamaged girder and damaged girders. It
can be seen that the percentage deviations of natural
frequencies for undamaged and damaged girders are all
less than 1% due to the changes caused by subtle dam-
age.
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Tab.1 Natural frequencies and percentage deviations for undamaged and damaged models

Mode number Undamaged Damage pattern 1 Damage pattern 2 Damage pattern 3
fo/Hz fi/Hz Deviation/ % f/Hz Deviation/ % f3/Hz Deviation/ %
1 2.493 2.475 0.72 2.475 0.72 2.493 0.02
2 3.195 3.194 0.03 3.170 0.79 3. 180 0.48
3 4. 664 4. 625 0.83 4. 653 0.23 4.621 0.92
4 9.970 9. 960 0.10 9. 960 0.10 9. 960 0.10
5 11. 364 11. 351 0.11 11.338 0.23 11.325 0.34

Note: Deviation =

fi=fo | fo x100%,i=1,2,3.

In order to obtain structural vibration response
signal, the girder is loaded by a stochastic white-noise
excitation. The output signal of vertical acceleration
response is obtained as the simulated monitoring data
from every node (27 nodes in total except for restric-
tions a, b, ¢ and d). And the sampling frequency of
the output signal is set to 100 Hz with a duration time
of 450 s.

The simulated monitoring data obtained from un-
damaged condition is divided into two databases (S,
and S,) mentioned in section 1.2. One consists of the
data obtained during the prior 300 s (S,) and the other
consists of the data obtained in the remaining 150 s
(S,). Meanwhile, the data obtained during the posterior
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150 s from all the damaged patterns is used as database
S,. All the simulated monitoring data in S, S, and S,
are further divided into 100,50 and 50 segments to get
sets of data samples, respectively. The amount of data
in each segment is set to 2 048 with 87.5% of data
overlapped among adjacent segments.

Fig. 3 shows the results from the application of
the proposed feature extraction and the damage alarm-
ing method to the numerically simulated data sam-
ples. From Figs. 3 (a) to (f), it can be observed that
there is a significant difference between the mean val-
ues of the Dpgobtained from the damaged and un-
damaged cases. Then a hypothesis test involving the t-
test method is further applied to obtain a decision of
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Fig.3 Variation of Dy from part of the nodes for damage patterns 1 to 3. (a) Variation of Dpg from node 4 for damage pattern 1; (b)

Variation of Dy from node 10 for damage pattern 1; (c) Variation of Dyg from node 17 for damage pattern 2; (d) Variation of Dpg from node 27

for damage pattern 2; (e) Variation of Dpg from node 19 for damage pattern 3; (f) Variation of Dyge from node 30 for damage pattern 3
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damage alarming if their differences are significant.
Tab. 2 shows the results of the damage decision
for damage patterns 1 to 3 for the numerical simula-
tion study. It is observed that for damage patterns 1 to
3, the damage alarming decision H, is given by 25, 25
and 22 nodes, respectively. These alarming nodes are
in the majority of 92.6%,92.6% and 81.5% of 27
nodes in total, respectively. The p-value is the proba-
bility that D does not predict damage, given the fact

that there is damage in the structure. Since the p-val-
ues are all much less than the significance level of
0. 05, the null hypothesis H,, is rejected and the alter-
nate hypothesis H, is accepted. In this numerical ex-
ample, it can be concluded that the Dy index defined
in this paper is sensitive to subtle structural damage
and the proposed algorithm is able to detect the exist-
ence of damage.

Tab.2 Results of damage alarming for damage patterns 1 to 3

Damage pattern 1

Damage pattern 2 Damage pattern 3

Node number

t-test p-value t-test p-value t-test p-value
2 H, 0. 000 H, 0. 030 H, 0.329
3 H, 0. 000 H, 0. 000 H, 0. 000
4 H, 0. 000 H, 0. 000 H, 0. 000
, 5 H, 0. 000 H, 0. 000 H, 0. 000
Leftside- ¢ H, 0. 000 H, 0.002 H, 0. 003
Pt 7 H, 0. 000 H, 0. 000 H, 0. 000
8 H, 0. 000 H, 0. 000 H, 0.157
9 H, 0.718 H, 0.023 H, 0. 108
10 H, 0. 000 H, 0. 000 H, 0.043
12 H, 0. 000 H, 0. 000 H,
13 H, 0. 000 H, 0. 000 H, 0. 000
14 H, 0. 000 H, 0. 000 H, 0. 000
15 H, 0. 000 H, 0. 000 H, 0. 000
Middle-span 16 H, 0. 000 H, 0. 000 H, 0. 000
17 H, 0. 000 H, 0. 000 H, 0. 000
18 H, 0. 000 H, 0. 000 H, 0. 000
19 H, 0. 000 H, 0. 000 H, 0. 000
20 H, 0. 000 H, 0. 000 H, 0. 000
2 H, 0. 000 H, 0.240 H, 0.996
23 H, 0. 803 H, 0.346 H, 0.958
24 H, 0. 000 H, 0. 000 H, 0. 000
o 25 H, 0. 000 H, 0. 000 H, 0. 000
Right-side- ¢ H, 0. 000 H, 0. 000 H, 0. 000
s 27 H, 0. 000 H, 0. 000 H, 0. 000
28 H, 0. 000 H, 0. 000 H, 0. 000
29 H, 0. 000 H, 0. 000 H, 0. 000
30 H, 0. 000 H, 0. 000 H, 0. 000

Note: H; reports damaged and H, reports undamaged.

3 Conclusion

In this paper, a damage detection method based
on the time series modeling algorithm is discussed. A
damage-sensitive feature index, which is derived using
the principal component analysis from the coefficients
of the AR part of the model, is presented. A hypothe-
sis test involving the t-test method is used to obtain a
damage alarming decision. These methodologies were
tested on a three-span-girder model. The results indi-
cate that the algorithm of feature extraction and dam-
age alarming presented in this paper can be used for
on-line damage alarming in SHM because of its sim-
plicity and output data only stream analysis.
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