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On similarity measures of interval-valued intuitionistic fuzzy sets
and their application to pattern recognitions

Xu Zeshui

(School of Economics and Management, Southeast University, Nanjing 210096, China)

Abstract: The concept of the degree of similarity between interval-valued intuitionistic fuzzy sets (IVIFSs) is
introduced, and some distance measures between IVIFSs are defined based on the Hamming distance, the
normalized Hamming distance, the weighted Hamming distance, the FEuclidean distance, the normalized
Euclidean distance, and the weighted Euclidean distance, etc. Then, by combining the Hausdorff metric with the
Hamming distance, the Euclidean distance and their weighted versions, two other similarity measures between
IVIFSs, i. e., the weighted Hamming distance based on the Hausdorff metric and the weighted Euclidean
distance based on the Hausdorff metric, are defined, and then some of their properties are studied. Finally, based
on these distance measures, some similarity measures between IVIFSs are defined, and the similarity measures
are applied to pattern recognitions with interval-valued intuitionistic fuzzy information.
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In Ref. [1], Atanassov generalized the notion of Zadeh’s fuzzy set'” to the notion of the intuitionistic fuzzy
set, which is characterized by a membership function and a non-membership function. Atanassov and Gargov'”' in-
troduced the interval-valued intuitionistic fuzzy set (IVIFS), which is a generalization of the intuitionistic fuzzy set.
The fundamental characteristics of IVIFS are that the values of its membership function and non-membership are in-
tervals rather than exact numbers. Atanassov'* defined some operations, relations and operators concerning IVIESs.
Bustince and Burillo™ introduced the concepts of correlation and correlation coefficient of IVIFSs, and introduced
two decomposition theorems of the correlation of IVIFSs. Hong'®' generalized the concepts of correlation and corre-
lation coefficients of IVIFSs in a general probability space and also introduced some decomposition theorems of the
correlation of IVIESs in terms of the correlation of interval-valued fuzzy sets and the entropy of intuitionistic fuzzy
sets. Hung and Wu'!” proposed a method for calculating the correlation coefficient of IVIFSs by means of “cen-
troid”. Xu'® also developed a method for deriving the correlation coefficients of IVIFSs. The prominent characteris-
tic of the method is that it can guarantee that the correlation coefficient of any two IVIFSs equals one if and only if
these two IVIFSs are the same, and can relieve the influence of the unfair arguments on the final results. Mondal

I defined a topology of IVIFSs and studied some topological properties. Deschrijver and Kerre''” es-

and Samanta
tablished the relationships between intuitionistic fuzzy sets, L-fuzzy sets, interval-valued fuzzy sets and IVIFSs.
Similarity measures are very useful in many fields, such as pattern recognition, machine learning, decision
making and market prediction''". Recently, many similarity measures have been proposed for measuring the degree
of similarity between intuitionistic fuzzy sets!"' . however, all these measures cannot deal with the similarity
measures between IVIFSs. Therefore, it is necessary to pay attention to this issue. In this paper, we define some sim-
ilarity measures of IVIFSs on the bases of the Hausdorff distance, the Euclidean distance, and the Hamming dis-
tance, etc. , and investigate some properties of these measures. Furthermore, we give the application of the similarity

measures to pattern recognitions under interval-valued intuitionistic fuzzy information.
1 Similarity Measures between IVIFSs

Let X be a universe of discourse. An IVIFS A over X is an object having the form"':

A= {{x, (2, ,(0)) | xeX) (D
where @,(x) C[0,1] and v,(x) C[0, 1] are intervals, and for every x e X:
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sup i, (x) +sup v, (x) <I (2)

Especially, if u,(x) =inf g,(x) =sup m,(x) and v,(x) =inf ¥,(x) =sup v,(x), then, the given IVIFS A is re-
duced to an ordinary intuitionistic fuzzy set.

For every two IVIFSs A = { {x, t,(x), ¥,(x) ) | xe X} and B = {{x, z(x), V5(x)) | x e X}, the following two
relations are defined'”:

1) ACB if and only if ( VxeX) sup i, (x) <sup i,(x) & inf g, (x) <inf g,(x) & sup v,(x) =sup v,(x) &
inf v, (x) =inf vy(x);

2) A=Bif and only if ACB & BCA.

In the following, we introduce the concept of the degree of similarity between IVIFSs:

Definition 1 Let s be a mapping s: IVIFS(X) xIVIFS(X)—[0, 1], and let A € IVIFS(X) and B € IVIFS(X),
then s(A, B) is called the degree of similarity between A and B, if the following properties are satisfied: (D) 0 <s(A,
B)<1;2 s(A,B) =1 if and only if A=B; 3 s(A,B) =s(B,A); @ If ACBCC, CeIVIFS(X), then s(A, C) <
s(A, B) and s(A, C) <s(B,C).

For convenience, from here we will assume that X is finite,i.e., X ={x,, x,, ..., x, }.

Let A = {{x;,1,(x;), v,(x))) | x; € X} and B = {{x;, us(x,), V5(x;) ) | x; € X} be two IVIFSs, and let g, (x,) =
(s () 5 ) () 1 (%) = L (X)) g () 15 94 (x)) = [50), V3 () 1, (%)) = [95(x), Yy (x,) ], where fi (x;) =
inf 2, (), 25 (x;) =sup 2, (x,), 5 (x;) =inf ,(x;), ¥ (x,) =sup v,(x;), s (x;) =inf f,(x;), y (x,) =sup fy(x;),
Tz'l;(xj) =inf v,(x;), ng(xj) =sup vz(x;), x; € X, then based on the geometric interpretation of the IVIFS, we define
the following distances for A and B:

1) The Hamming distance:

] n
d\(A,B) = sz [ ‘,ELI/;(XJ) —IEL;()C,) ‘ + ‘,E’«;\J(x/) —ﬁg(xj) ‘+ ‘le;(xj) _{};(xj) ‘+ ‘VX(X,) _T}IL;J(XJ‘) H (3)
iz
2) The normalized Hamming distance:
1 n
d,(A,B) = @Z Clas(x) —ms(x) |+ (@ (x) —mp(x) [+ [95(x) —vs(x) [+ [95(x) —v(x) [T (4
iz
3) The Euclidean distance:

dy(A,B) = «/4112 [ (x) =s(x))? + (3 (x) =g (x))7 + (Vi(x) =v5(x))7 +(7(x) =V5(x))7] (5)

4) The normalized Euclidean distance:

d,(A.B) = ﬁz [ () = (X)) + (3 (%) =fp(x))* +(5(0x) =V5(x))” +(7(x) =V5(x))°] (6)

The Hausdorff metric!'”

a metric space resemble each other with respect to their positions, which can be defined as follows:
Definition 2'”'  Let &, =[a,, b,] and &, = [a,, b,] be any two intervals, then the Hausdorff distance
H(a,,a,) is given by

is a measure of how many two non-empty compact (closed and bounded) sets. In

H(a,,a,) =max{|a, —b,
[15]

a —b, |} (7)
applied the Hausdorff metric to the similarity measures between

Grzegorzewski''", and Hung and Yang
intuitionistic fuzzy sets, in the following, we define some similarity measures between IVIFSs combining the
Hausdorff metric with the Hamming distance, the Euclidean distance and their normalized versions.

1) The Hamming distance based on the Hausdorff metric:

g (x) =) [ [95(x) = 95(x) | [95(x) —@g(x) [} (8)

ds(A,B) = Y max{|f;(x) —jy(x)

2) The normalized Hamming distance based on the Hausdorff metric:

() = (x) [ [5G =y [ 1(x) —m(x) [} (9)

dy(A,B) = %2 max{ | g (x;) = f(x)

3) The Euclidean distance based on the Hausdorff metric:

d(A.B) = J > max{(E ) =00 () =5 (0) " (W) =)™ (05(x) =)} (10)
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4) The normalized Euclidean distance based on the Hausdorff metric:

dy(A.B) = \/}12 max{ (B (5) =R5(6))°% (B(5) =5 (6% 050g) =50)" (5(x) =E5(x))*) (1)
s
However, the elements in the universe may have differences of importance in pattern recognition. Therefore,
we need to take the weights of the elements x;(j = 1,2, ..., n) into account. In the following, we develop some
weighted distance measures between IVIFSs.
Let w={w,,w,,...,w,}" is the weight vector of the elements x;(j=1,2,...,n), then, we have
1) The weighted Hamming distance:

1 c L L ~U ~U ~L ~L ~U ~U
d9(A7 B) = Z; Wj[ ‘,ELA(XI') _,afB(xj) ‘ + ‘/-LA('xj) _Mg(x_/) ‘ + ‘VA(xj) _VB(xj) ‘ + ‘VA(x_j) _VB(xj) H (12)

If w={1/n,1/n, ...,1/n}", then Eq. (12) is reduced to the normalized Hamming distance Eq. (4).
2) The weighted Euclidean distance:

d(A, B) =\/4112 wil (g (%) = ()" + (B (%) =y (X)) + (V5(x) = V()" +(33(x) = 5(x))’]

(13)
If w={1/n,1/n,...,1/n}", then Eq. (13) is reduced to the normalized Euclidean distance Eq. (6).
3) The weighted Hamming distance based on the Hausdorff metric:

dy (A B) = 3 wimax{ [ gi(x) - asCe) |- a0 —an(e) [ 195Gy = w50 |- 190G —aste) 1)

(14)
If w={1/n,1/n, ..., 1/n}", then Eq. (14) is reduced to the normalized Hamming distance based on the
Hausdorff metric Eq. (9).
4) The weighted Euclidean distance based on the Hausdorff metric:

dy(A,B) = \/Z wmax { (i (%) —5(x))*, (1 (%) =g ()7, (W(x) = 5(x))% (Wi (x) =@y (x))*} (15)
i

Iftw={1/n,1/n,...,1/ n}T, then Eq. (15) is reduced to the normalized Euclidean distance based on the
Hausdorff metric Eq. (11).

Similar to the distance measures between intuitionistic fuzzy sets , it can be easily proven that all the
above distance measures satisfy the following properties: 1) d(A, B) =0; @ d(A, B) =0 if and only if A =B; (3
d(A,B) =d(B,A); @ If ACBCC, CeIVIFS(X), then d(A, C) =d(A, B) and d(A, C) =d(B, C).

Based on Egs. (12)-(15), we define some similarity measures of A and B as follows:

[11-16]

1 $ L L ~ ~ ~L ~L ~ ~
sl(A’ B) = 1 _ZZ]‘ WI[ ‘[ZLA(x/') _,aﬂ(xj) ‘ + ‘,U«E(x,) _Mg(xj) ‘ + ‘VA(X/-) —VB(Xj) ‘ + ‘VH(XJ-) _Vg(xj) ‘]

(16)

5,(A,B) =1 —\/}12 wil () = ()" + () () =fy (1)) + (V5(x) =V5(x))* +(7/(x) =¥5(x;))’]

(17)

k] ’ k]

5(A.B) =1 = % wmax{|g(x) —f(x,)
j=1

/:L,Iqj(xj) —/ftg(xj) i}]Ad(xj) _T)It;(xj) T’Y/I;I(xj) _/:Lg(xj) ‘} (18)

s,(A,B) =1 - ijmaX{(ﬁk(xf) = (X)) (s () = (X)), (V5 (x) = V()% (5 (%) =i (%)%}

(19)
All these s;,(A, B) (i=1,2,3,4) have the properties given in definition 1. It is clear that the larger the val-
ues of 5,(A,B) (i=1,2,...,6), the more the similarity between IVIFSs A and B.

2 Application of Similarity Measures to Pattern Recognitions

In this section, we apply the similarity measures presented above to the pattern recognition problem with in-
terval-valued intuitionistic fuzzy information, which involves the following steps:
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Step 1 For a pattern recognition problem, suppose that there exist m patterns which are represented by IV-
IFSs A, = {<xj3ﬂAi(xj)7 T/Aj(xj)> \xj eX} (i=1,2,..., m) in the feature space X = {x,, x,, ..., x,, }, and suppose
that there is a sample to be recognized which is represented by an IVIFS B = {<xj, (X)), vp(x;) ) | x; e X}.

Step 2 Calculate the degree s(A;, B) of similarity between A, and B by one of Egs. (16)-(19).

Step 3 Select the largest one s(Al.O, B) from s(A,,B)(i=1,2, ..., m), and then the sample B belongs to the
pattern A, according to the principle of the maximum degree of similarity between IVIFSs.

In the following, a pattern recognition problem about the classification of building materials ( adopted from
Ref. [16]) is used to illustrate the proposed similarity measures.

Assume that there are four classes of building material, which are represented by the IVIFSs A, = {<xj,
Py (X)), ﬁAi(xj)> \xj eX} (i=1,2,3,4) in the feature space X = {x,, x,, ..., x;, } whose weight vector is w =
{0.1,0.05,0.08,0.06,0.03,0.07,0.09,0.12,0. 15,0. 07,0. 13,0. 05} ", and there is an unknown building ma-
terial B:

A, ={(x,,[0.1,0.2]1,[0.5,0.6] ), (x,,[0.1,0.2],[0.7,0.8] ), (x;,[0.5,0.6],[0.3,0.4] ),
(x,,[0.8,0.91,[0,0.1]), (x,,[0.4,0.5],[0.3,0.4] ), (x,,[0,0.1],[0.8,0.9]),
(x,,[0.3,0.4]1,[0.5,0.6] ), (x;,[1.0,1.0],[0,0] ), {x,[0.2,0.3],[0.6,0.7] ),
(x,0,[0.4,0.5],[0.4,0.5]), (x,,,[0.7,0.8],[0.1,0.2] ), {x,,,[0.4,0.5],[0.4,0.5] ) }

A, ={(x,,[0.5,0.6],[0.3,0.4] ), (x,,[0.6,0.7],[0.1,0.2] ), {x;,[1.0,1.0],[0,0] ),
(x,,[0.1,0.21,[0.6,0.7] ), (x5,[0,0.1],[0.8,0.9] ), {x,,[0.7,0.8],[0.1,0.2] ),
(x,,[0.5,0.6],[0.3,0.4]), (x;,[0.6,0.7],[0.2,0.3] ), (x,,[1.0,1.0],[0,0] ),
(x,0,[0.1,0.2],[0.7,0.8]), (x,,,[0,0.1],[0.8,0.9] ), {x,,,[0.7,0.8],[0.1,0.2] ) }

A, ={(x,,[0.4,0.5],[0.3,0.4]), {(x,,[0.6,0.7],[0.2,0.3]), {x;,[0.9,1.0],[0,0] ),
(x,,[0,0.11,[0.8,0.91), {x5,[0,0.1],[0.8,0.9] ), {x,,[0.6,0.71,[0.2,0.3] ),
(x,,[0.1,0.2],[0.7,0.8] ), {xg,[0.2,0.3],[0.6,0.7]), (x5, [0.5,0.6],[0.2,0.4] ),
(x,,[1.0,1.01,[0,0]), {x,,,[0.3,0.4],[0.4,0.5] ), {x,,,[0,0.1],[0.8,0.9] )}

A, ={(x,,[1.0,1.0],[0,01), {x,,[1.0,1.0],[0,0] ), {x;,[0.8,0.9],[0,0.17 ),
(x,,[0.7,0.81,[0.1,0.2]), (x5, [0,0.1],[0.7,0.9] ), {x,,[0,0.1],[0.8,0.9] ),
(x,,[0.1,0.2],[0.7,0.8] ), {xg, [0.1,0.2],[0.7,0.8] ), (x,,[0.4,0.5],[0.3,0.4] ),
(x,0,[1.0,1.01,[0,0]), {x,,,[0.3,0.4],[0.4,0.5] ), (x,,,[0,0.1],[0.8,0.9] )}

B={{x,,[0.9,1.0],[0,0]), (x,,[0.9,1.0],[0,0] ), (x5, [0.7,0.8],[0.1,0.2] ),

(x,,[0.6,0.71,[0.1,0.2] ), {x5,[0,0.1],[0.8,0.9]), {x,, [0.1,0.2],[0.7,0.8]),
(x,,[0.1,0.2],[0.7,0.8] ), {xg, [0.1,0.2],[0.7,0.8]), {x,,[0.4,0.5],[0.3,0.4] ),
(x,0,[1.0,1.01,[0,01), (x,,,[0.3,0.4],[0.4,0.5] ), {x,,,[0,0.1],[0.7,0.9] ) }

Our aim is to justify which class the unknown pattern B belongs to. We first calculate the degree of similarity

between A; and B by Eq. (16), and obtain
s,(A,,B) =0.597, s,(A,,B) =0.561, s,(A;,B) =0.833, s,(A,,B) =0.976

From the result above, we know that the degree of similarity between A, and B is the largest one, and thus,
the unknown pattern B should belong to the pattern A,.

Similarly, if we calculate the degree of similarity between A; and B by Eqs. (17)-(19), and then we obtain

s,(A,,B) =0.530, s,(A,,B) =0.529, s,(A;,B) =0.734, s,(A,,B) =0.951
s;(A,, B) =0.545, s,(A,,B) =0.503, s,(A;,B) =0.810, s,(A,,B) =0.956
s,(A,,B) =0.473, s,(A,,B) =0.473, s,(A;,B) =0.712, s,(A,,B) =0.934

The results above show that the degrees of similarity between A, and B derived by Eqgs. (17)-(19) are also

greater than all the others, and thus it is clear that the unknown pattern B should belong to the pattern A,.

3 Conclusion

Recently, many similarity measures have been developed for measuring the degree of similarity between intu-
itionistic fuzzy sets. However, it seems that there have been no investigations on similarity measures of IVIESs. In
this paper, based on the Hausdorff distance, the Euclidean distance, and the Hamming distance, etc. , we have pro-
posed some similarity measures between IVIFSs. We have also applied these similarity measures to pattern recog-
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nitions under interval-valued intuitionistic fuzzy information. The feasibility and effectiveness of the developed

measures have been verified by a pattern recognition problem concerning the classification of building materials.

In the future, the probability distribution (density) function

181 can be considered as a possible tool to measure the

similarity between IVIFSs.

[1]
(2]
(3]
[4]
[5]
[6]
[7]
[8]
(9]
[10]
[11]

[12]
[13]

[14]

[15]

[16]

[17]
[18]

References

Atanassov K. Intuitionistic fuzzy sets [J]. Fuzzy Sets and Systems, 1986,20(1):87 —96.
Zadeh L A. Fuzzy sets [J]. Information and Control, 1965, 8(3):338 —353.
Atanassov K, Gargov G. Interval-valued intuitionistic fuzzy sets [J]. Fuzzy Sets and Systems, 1989,31(3):343 —349.
Atanassov K. Operators over interval-valued intuitionistic fuzzy sets [J]. Fuzzy Sets and Systems, 1994, 64(2):159 —174.
Bustince H, Burillo P. Correlation of interval-valued intuitionistic fuzzy sets [J]. Fuzzy Sets and Systems, 1995,74(2):237 —244.
Hong D H. A note on correlation of interval-valued intuitionistic fuzzy sets [J]. Fuzzy Sets and Systems, 1998,95(1):113 —117.
Hung W L, Wu J W. Correlation of intuitionistic fuzzy sets by centroid method [ J] . Information Sciences, 2002, 144(1/2/3/4):
219 —225.
Xu Z S. On correlation measures of intuitionistic fuzzy sets [ C]//The 7th International Conference on Intelligent Data Engi-
neering and Automated Learning, Lecture Notes in Computer Science. Burgos, Spain, 2006,4224:16 —24.
Mondal T K, Samanta S K. Topology of interval-valued intuitionistic fuzzy sets [J]. Fuzzy Sets and Systems, 2001, 119(3): 483
—494.
Deschrijver G, Kerre E E. On the relationship between some extensions of fuzzy set theory [J]. Fuzzy Sets and Systems, 2003,
133(3):227 —235.
Liang Z Z, Shi P F. Similarity measures on intuitionistic fuzzy sets [J]. Pattern Recognition Letters, 2003, 24 (15): 2687 —
2693.
Szmidt E, Kacprzyk J. Distances between intuitionistic fuzzy sets [J]. Fuzzy Sets and Systems, 2000, 114(3):505 —518.
Li D F, Cheng C T. New similarity measures of intuitionistic fuzzy sets and application to pattern recognitions [J]. Pattern
Recognition Letters,2002,23(1/2/3):221 —225.
Grzegorzewski P. Distances between intuitionistic fuzzy sets and/or interval-valued fuzzy sets based on the Hausdorff metric
[J1. Fuzzy Sets and Systems,2004,148(2):319 —328.
Hung W L, Yang M S. Similarity measures of intuitionistic fuzzy sets based on Hausdorff distance [J]. Pattern Recognition
Letters,2004,25(14): 1603 — 1611.
Wang W Q, Xin X L. Distance measure between intuitionistic fuzzy sets [J] . Pattern Recognition Letters,2005,26(13):2063 —
2069.
Nadler S B Jr. Hyperspaces of sets [ M]. New York: Marcel Dekker, 1978.
Zhang Z M. The application of generalized entropy in planning time distribution [J] . Mathematics in Practice and Theory, 1982
(1):31 —33. (in Chinese)

X 8] B 5 AR SR AR AU N B2 e A 4R 30 IR 7l A RY R F

EK

(AR F5EER, &% 210096)

AT R A A R AL 6 A , JF L& T Hamming 38 # (4714 Hamming 32 & | Am
#4) Hamming Euclidean 32 % . Euclidean 35 & .47 f£. 4 Euclidean 35 & . w49 Euclidean 38 % %,
LT — 2 ) £ AL IE 50 . A6 , 3@ it de Hamming 8 % = Euclidean 38 5 w02 € 149 4w
B X5 Hausdorff B ZARLES, 26 T 2 AP2RE-49 X o) AL GE AL R 38 &% ) &, Bp AL T Hausdorff &
2 %9 #e A Hamming JE # F= 3k T Hausdorff & 2 #9 #m 4L Euclidean ¥ 3 , 5f BAT L T €A1 R, &
o, AT LR B B, A T K AR AR B, I e e A1 R A T AR X AR A A
SEHEIA : K] AL SR B AR L s BEX AR A

HE 45 ES 0159



