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OFDM blind channel estimation based on polynomial models
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Abstract: A two-dimensional (2-D) polynomial regression model is set up to approximate the time-frequency
response of slowly time-varying orthogonal frequency-division multiplexing (OFDM) systems. With this model
the estimation of the OFDM time-frequency response is turned into the optimization of some time-invariant
model parameters. A new algorithm based on the expectation-maximization (EM) method is proposed to obtain
the maximum-likelihood (ML) estimation of the polynomial model parameters over the 2-D observed data. At
the same time, in order to reduce the complexity and avoid the computation instability, a novel recursive
approach (RPEMTO) is given to calculate the values of the parameters. It is further shown that this 2-D
polynomial EM-based algorithm for time-varying OFDM (PEMTO) can be simplified mathematically to handle
the one-dimensional sequential estimation. Simulations illustrate that the proposed algorithms achieve a lower bit
error rate (BER) than other blind algorithms.
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(PEMTO). It exploits the 2-D correlation information

(OFDM) is an effective technique for broadband wire-
less communication. It has been accepted by many
wireless standards, such as wireless local area network
(WLAN) standards (IEEE 802. 11a)'". To detect the
transmitted data sequence in the OFDM system, it is es-
sential for the receiver to obtain reliable channel infor-
mation"' . However, blind channel estimation of time-
varying OFDM systems is a challenging task as the
OFDM time-frequency response of the i-th subchannel
at the k-th symbol interval (denoted by H,,) changes
with index i and k.

It is illustrated in Refs. [3 —4] that H,, is closely
correlated with its neighbors, i. e. H,,,, or H,,, ,. In
other words, although H, , varies with i and k, there ex-
its no abrupt change between adjacent H; 1. With this
property some parametric models of H,, and related
blind algorithms are proposed'>>™'. These blind detec-
tors are known as GLRT detectors'”’, not ML detec-
tors. Notice that these blind detectors only utilize the
correlation information between sequential time-slots or
subchannels, ignoring the 2-D correlation between adja-
cent subchannels or time-slots. Hence, the 2-D estima-
tion is carried out based on the 1-D estimation.

In this paper we propose a new polynomial EM-
based algorithm for time-varying OFDM  systems

Received 2007-01-08.

Foundation item: The National Natural Science Foundation of China
(No. 60472026) .

Biographies: Fang Chengzhi (1976—), male, graduate; Du Sidan ( cor-
responding author), female, doctor, professor, coff128@ nju. edu. cn.

between adjacent H,, and it approximates H,, of
OFDM systems with the 2-D polynomial model intro-
duced in Ref. [5]. In contrast to the pilot-based method
given in Ref. [5], the new algorithm implements the
blind estimation of H, ,, and obtains the ML estimation
of the polynomial model parameters iteratively. As
shown in the simulation, it can provide better perform-
ance than other blind algorithms. It should be noted
that this new algorithm is different from the algorithm
given in Ref. [8] which focuses on the channel impulse
response instead of H, .

The PEMTO given above involves matrix inver-
sion at every iterative step, which increases both com-
plexity and instability. Exploiting the special structure
of the matrix, we can derive a recursive variant of the
PEMTO (RPEMTO) by applying the matrix inversion
theorem. The RPEMTO requires no matrix inversion
and handles the 2-D observed data sequentially. The
simulations demonstrate that it works well for small
Doppler shifts.

Mathematically, the 2-D PEMTO can be simpli-
fied to carry out the 1-D estimation of OFDM systems.
Note that for static OFDM systems the change of H, ,
in frequency direction can also be approximated by 1-D
polynomial models. Therefore, the 1-D version of the
PEMTO can also be employed to implement the chan-
nel estimation of static OFDM systems. Some blind es-
timation algorithms for static OFDM systems have been
proposed'*™' . However, this newly proposed 1-D meth-
od has some particular advantages for its performance
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improvement and complexity reduction.
1 System Model

Under the wide sense stationary uncorrelated scat-
tering (WSSUS) mobile channel model'"”, the time-
varying characteristic of H, , and the OFDM inter-sub-
carrier interference (ICI) are mainly caused by the
Doppler frequency shift, especially the maximum
Doppler frequency shift f,'*""". For simplicity, we de-
note the normalized Doppler frequency shift as f, with
fi =foT, and T, representing the OFDM symbol inter-
val. It has been proved in Ref. [11] that under the WS-
SUS channel model, the ratio of signal to ICI (SIC) is
greater than 36 dB when f; is less than 0. 01. As point-
ed out in Ref. [1], f;, is usually on the order of 100 Hz
in the practical communication system. Hence, the cor-
responding f, is very small and the channels change
slowly'®® . As a result, for a regular signal to noise ra-
tio (SNR), the ICI is negligible compared to the addi-
tive Gaussian noise'*® . From Refs. [2, 6], we thus
get the following expression about the OFDM received
symbol:

Yiw =H (X +Niy (1)
where x; , is the transmitted data symbol, y, , is the de-
modulated/received data symbol, and N, , represents
the white complex Gaussian process with a zero mean
and a variance ¢o~”". With the 2-D polynomials, H,
can be projected over a (27 +1) (2K +1) time-frequen-

. . . 5
cy window around a center point (i,, k,)"':
M-1 N-1

H, =Y Y Clnm(i —ip)"(k —kp)" + Ry

m=0 n=0
ky —K<sk<k, +K; i, -I<i<iy+I (2)
where R, ,, is the model error and M and N are polyno-
mial orders for frequency and time, respectively. It is
pointed out in Ref. [5] that H;, can be approximated
by a few polynomial coefficients C(n, m) with a small
penalty on model error:
H,,~q;,C (3)
where
4o =10 =) "(k=ky)*, s (i = i) " (k= k)",
e (P =i) "k =k)™ YT
C ={C(0,0), ...,C(N -1,0),C(0,1),...,C(N-1,M-1)}"
We define the following vector to represent all
the transmitted data in the (27 +1) (2K +1) time-fre-
quency window.

X= {xfl+i‘,, “Kaky o Xy Kk X oLaiy —K 414k ""xl+[(,,l(+k“}T
(4)
If X is defined in this way, then Y, H and N are
used in the same way to denote the received data vec-

tor, the response vector and the Gaussian noise vector,
respectively. From (4) and (3), we thus obtain

Y =diag(X)H + N (5)
where H = RC, R = {q-1+i0, —kaky o Qivig -k
q _jiiy —Kelikys *+o> q1+iO,K+k(,}T’ and diag(X) denotes
a zero matrix except that X, is the matrix’ s (i, i) en-
try. With the above equation, the ML estimation of H
is turned into the estimation of C. Following the ML
principle, we try to find an estimation of C that maxi-
mizes the likelihood function f(Y | C). However, as
the observed data Y is not enough for deriving a close-
form of f(Y | C), the maximization of f( Y | C) is not
easy to manipulate. We hence resort to the EM algo-

rithm.
2 EM-Based Algorithms and Recursive Va-
riant

The key to the EM algorithm is to define “com-
plete” data and “incomplete” data'®'?'. We take Y as
“incomplete” data and Z = (X, Y) as “complete” da-
ta. The algorithm can be broken down into two steps:
the E-step and the M-step. The E-step calculates

o(C|C") =E[logfZ|C) | Y,C"]  (6)
The M-step then gets
Cc"Y zarg maxQ(C | ) (7)

This procedure is repeated until C*” converges.
2.1 Polynomial EM-based algorithm for time-
varying OFDM (PEMTO)

Without loss of generality, we assume that the
transmitted data x; , represents a PSK or QAM signal
with constellation size D and we denote the signal by
{xs, 1 <d<D}. With the existence of the Gaussian
noise, we have the following likelihood function

1 1
f(y[,k ‘ C, X 1) =726XP{ _; ‘ Yik _xi,qukC ‘ 2}

yes
(8)

Since N, , is independent from each other, the
conditional probability density function (pdf) of Y is

as follows:
K +kg I+ig

fylie,x) = I JI fvlCxn (9

k==K +koi = =T +i
Following the E-step given in Ref. [8], we cal-
culate
o(C|C”) = ElloghZ|C) |Y,C"] =
E[logf(Y | C,X)f(IX | C) | Y,C"]
SN (S 6 X Y X )
2 2 (log , ) ’ (p)
D DAY, | C7)
(10)
We continue with the M-step. Differentiating

d=1 k="—K-+koi = ~T+i
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(10) with respect to C and setting it to zero, we get
C([Hl) :(P(P))—ls(lﬂ) (11)

where

P(p) :RTU(p)R, S(p) :RTV(p) U(p) — diag( U(p))

(p) _ (p) (p)
Uu _{u—1+io,—K+kﬂ’ "',ul‘*l‘”,*K"’ko’

(p) (p) T
ui”“m" CK4ltkgr co uIIJ)ri(),K+k0}
D
» _ Ix, |2 1 P
U, = z Xy ) Sy I xgs )
d=1 f(yi,k ‘ c”)

(p) _ (p) (p)
V _[v—1+i0,—K+k0’ ""v1+i0,fl(+k0’

(p) (p) T
v71+i(), ~K+1+ky> =" v1+i().K+k()]

D
1

(P i (p)

Vik = YiX fy, \x,C )

A R emy O
D

1 1
zexp{ - | YVik _xdqzk C| 2}
Do o

f(Yi,k ‘C) = 2

iz

The iterative procedure should be terminated as
soon as the difference between C”*" and C” is suffi-
ciently small. Once C is obtained, H can be recovered
by (5).

2.2 Recursive PEMTO (RPEMTO)

Following (11), an MN x MN matrix must be in-
versed to obtain C”*" for every p. However, matrix
inversion often leads to computing instability and, in
the worst case, is impossible. In order to make sure
that the algorithm can be implemented successfully,
we should avoid matrix inversion in the computing
process. Considering the particular structure of P, we
give a recursive approach (RPEMTO) by exploiting
the matrix inversion theorem as

(A+BCB") '=A"'-A"'B(B'A"'B+C") 'B"A"'
(12)

We define T, =(27/+1) (2K + 1) and rename the

matrix entry in P” as

T T
R ={r.r,...r.}, V7 =y, ...,vi’;;}
. T

U” =diag(UY), UY ={u?,..ul)

In order to get a recursive method, for 1 <i<T,,
we define the following vectors or matrices:
5[(_/’) — (pr)) -1’ Pﬁ.”) :R;F ng) Ri
U =diag(U/D, U/ ={u), ..oul’}'
R ={r,,r,,...1r;}, S'=R/V?
Y

V(_p) — {v(m
Thus, for 1 <i<T,, we have the following ex-

sp 00t

pressions:
V(p) U(1’> 0
T _rpT P _ i P _ !
R, =[R;,r ], Vf'+1 —[ Tk U§+1 = )
v 0 u
Sitl i+l
» _ QW (p)
Si+l_Si +ri+1vx,-+]
» _ pT r1(p (p T
Pl =R; U" R, U i

Applying the matrix inversion theorem given in

(12), we have
(p) T (p)
6, I, .I,,0,

-1 (p)
5511)1 =(P(p) ) =0," -
(p) y -1 T (02
(usi+1) +ri+16i ri+l

i+l

(13)
Finally, we get
Ci']i)l :ai'li)l Sgl?l = Ct'p) +K§T1((”§P),) 71":1? _riT+1 CEP))
(14)
where
K(.p) — 5?7) ri+1

i+1 (p) \ -1 T (P
(“.;Hl) +r.,, 6, T,

T
5[(_1;)1 :5[(_?) _K{P) r 651))

i+1%i+1

+1

. 1
A recursive approach for C*"

is given in (14).
But, all the recursive steps in (14) are repeated when-
ever p changes. This leads to great computing com-
plexity since it consists of both iterative ( with respect
to p) and recursive steps (with respect to i).

Similar to the way the generalized EM algorithm

13
takes'"!

, we apply some strategy to reduce computing
complexity and derive a truly recursive variant of

PEMTO. Actually, the steps in (14) mean that ui:il
and v,” are used to update C'” recursively. We do

not need to carry out many recursive steps just for the
computing of (7) with different p indices. We aim at
just increasing the value of Q(C | C*”) instead of try-
ing to obtain its maximum at every step. The recursive
steps presented by (14) can be merged with the itera-
tive steps presented by (6) and (7). Briefly speaking,
we can replace the iterative index p with the recursive
index i. For 1 <i<T,, the recursive computing steps
are rewritten as follows:

C'=CY + KTV () )WY -1, C7) (15)

i+1

where

ivl) 1 ST a()\T
K = -1 G+D) (ri,,06")
(u.vi+l) +7’ ri+1
50D —g® _K(i+l)r;l"+15(i)

This idea has been presented and applied in many

papers such as Refs. [13 — 14]. Lots of simulations
show this recursive method achieves nearly the same
performance as the direct application of (11). Although
the performance of RPEMTO is not as good as the
PEMTO, its complexity is far less than that of the
PEMTO. At the same time the RPEMTO is a robust
approach as it avoids matrix inversion.
2.3 1-D PEMTO or block PEMTO (BPEMTO)

Now we consider a particular case for PEMTO. If
we select K =0, the original 2-D estimation problem is
turned into a 1-D estimation problem with some vectors
being redefined as follows:

C={C0),...C(M-1)}"
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H={H_,,....H,...H,]}
q,={0 _io)o, e (1 _io)M_z’ s (1 _io)M_l }T
R={q_ ;.- ‘11+iO}T

Other vectors and matrices such as X, Y, N, V and U
are redefined in the same way. Although the vectors
and matrices are modified, the framework of PEMTO
remains the same and the EM iteration given in Eq.
(12) is still valid. We call it block PEMTO ( BPEM-
TO) since only one block of observed data Y is in-
volved. Notice that the recursive approach given in Eq.
(14) 1is also applicable.

The BPEMTO has the advantage of handling the
observed data time-slot by time-slot (block by block).
It requires no data storing in advance as the algorithm
in Ref. [9] does. It is more appropriate for the sequen-
tial estimation. Compared to the blind GLRT detector
given in Ref. [2], the BPEMTO is based on the EM
method, resulting in better performance.

The initial value of C is obtained by the eigenvec-
tor-based method proposed in Ref. [6] which can be
directly used for the BPEMTO. To make it fit for the
PEMTO, we must run this method two times around
the center point (i, k) .

2.4 Cramer-Rao lower bound ( CRLB)

The CRLB provides the MMSE bound of the esti-
mator' . Defining X,, = diag(X) and assuming X,, is
known, we get the likelihood function from (5):

Y10 =1—exp{ -%HY-XMRCHZ}
(mo o

2\ T
) 0
Define the t-th entry of C as C,. The CRLB of C,
is

CRLB(C,) =1"'(C),, (16)
where
_ 5 (alogf(Y | C) \*1 R'X;X,R
I(C)“E[sc( aC ) ]= S

is the Fisher information matrix and 1~'(C) . 1s the
(t,t) entry of the inversion matrix of I(C)"'. During
the derivation process of (16), we assume X is deter-
ministic. In fact, every entry in X is random. We can
employ the modified CRLB (MCRB)"' to provide a
valid bound of C.

1 o’

MCRB(Ct) = E[I( C)z l] = K +ko I+ig

2 ZE“ xi,kl]zqik.r

k=—K-+ky i =~I+i
(17)
where g, , , is the t-th entry of the vector g, .

3 Simulation and Discussion

Assume an OFDM system with a total bandwidth

of 1 MHz (the carrier frequency is 1 GHz) and M =
32 equally-spaced subchannels. The signal constella-
tion is QPSK. The time-varying Rayleigh fading chan-
nel is simulated according to the COST 207 TU mod-
el which has the delay profile{0.0,0.2,0.5,1.6,
2.3,5.0} s and the power profile {0. 189, 0.379,
0.239,0.095,0.061,0.037}.

Fig. 1 gives the MSE of the PEMTO and the
RPEMTO with I =15, K =5, M =4, N=2 and f,; =
0. 012. Four pilot symbols with equal space are insert-
ed to eliminate the phase ambiguity over each of 2K +
1 frames'® . The overhead caused by the pilot symbols
is only 1/88 of the total transmitted data. It can be
found that PEMTO gets close to the CRLB when SNR
is high. In other words, the PEMTO achieves excel-
lent estimation with high spectral efficiency.

107!
o 2-D PEMTO
+ 2-D RPEMTO
102 . CRLB
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Fig.1 SNR-MSE in time-varying OFDM systems (f, =0. 012)

The average bit error rate (BER) versus SNR for
different blind methods is shown in Fig. 2. These
methods include the PEMTO, the RPEMTO and the
method given in Ref. [6] which employs the 1-D pol-
ynomial-based branch and bound ( BB) approach. For
comparison, we also run simulations for the EM-based
method offered in Ref. [9], which assumes that chan-
nels remain static. At the same time, the performance
of one-tap equalization with perfect knowledge of the
channel impulse response (CIR) is used as the bench-
mark. Notice that the SD method given in Ref. [2]
and the BPEMTO are not simulated for 2-D estimation

107!
+ Polynomial-based BB
o 2-D PEMTO
+ 2-D RPEMTO
« Perfect CIR
» Static EM
B i0-2
210
-3 . . . . ,
10 5 10 15 20 25 30

SNR/dB
Fig.2 SNR-BER in time-varying OFDM systems (f;, =0. 012)
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as they are designed to carry out sequential estima-
tion. If applied for 2-D observed data, they surely in-
volve huge complexity, making them totally
impractical.

Obviously, the PEMTO provides better perform-
ance than the EM-based method with static channel
assumption. This may be explained by the fact that the
PEMTO takes the channel variation into considera-
tion. It can also be concluded that the PEMTO always
offers better performance than the BB method since
the PEMTO exploits the 2-D correlation information.
When the SNR is high, the PEMTO achieves nearly a
1.5 dB gain over the BB-based method. The gap be-
tween the BER performance of the RPEMTO and the
PEMTO is narrowed when the SNR increases.

Fig. 3 illustrates the BER versus the SNR for the
BPEMTO, the recursive BPEMTO and the sphere de-
coder (SD) approach in Ref. [2] with f, =0, 1. e, the
static channel model. For the computing of the BPEM-
TO, we select I =15, K =0 and M =3. The SD pro-
vides the best performance when the SNR is low. As
the SNR rises, the BPEMTO outperforms the SD due
to its ability to obtain the ML estimation. It can be
found that the gap between the SD and the BPEMTO
increases with the SNR. The increase of the SNR also
makes the relative performance of the recursive
BPEMTO become increasingly better. Notice that the
performance gap between the recursive BPEMTO and

the BPEMTO is less than 2 dB when the SNR is high.

107!
> SD
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Fig.3 SNR-BER for sequential estimation (f; =0)

The complexity versus the sequence size (27 +1)
for the BPEMTO, the recursive BPEMTO and the SD
is shown in Fig. 4. The number of float point opera-
tions ( flops) is used as a measure of complexity'”.
The number of the flops of the BPEMTO is more than
that of the SD when the sequence size is small. How-
ever, the BPEMTO involves less complexity than the
SD with a large sequence size since the SD carries out
an exhaustive search on the searching tree'”. At the

same time, the recursive PEMTO can be implemented

with far less complexity.

10°
+ BPEMTO
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é + Recursive BPEMTO
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é 10*
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Fig.4 Flops-sequence size 2/ +1 (f, =0, SNR =22 dB)

4 Conclusion

This paper investigates the application of the EM
algorithm for OFDM channel estimation. Approxima-
ting the OFDM time-frequency response with a 2-D
polynomial model, we turn the estimation of channel
response into the estimation of some time-invariant
coefficients which can be obtained effectively by the
PEMTO/RPEMTO/BPEMTO algorithms presented in
this paper. Simulations prove that these algorithms are
appropriate for the blind estimation of OFDM sys-
tems.
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