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Abstract: Two discriminative methods for solving tone problems in Mandarin speech recognition are presented.

First, discriminative training on the HMM (hidden Markov model) based tone models is proposed. Then an

integration technique of tone models into a large vocabulary continuous speech recognition system is presented.

Discriminative model weight training based on minimum phone error criteria is adopted aiming at optimal

integration of the tone models. The extended Baum Welch algorithm is applied to find the model-dependent

weights to scale the acoustic scores and tone scores. Experimental results show that tone recognition rates and

continuous speech recognition accuracy can be improved by the discriminatively trained tone model.

Performance of a large vocabulary continuous Mandarin speech recognition system can be further enhanced by

the discriminatively trained weight combinations due to a better interpolation of the given models.
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Tone recognition is an important task for Manda-
rin speech recognition due to the tonal nature of the
language. There has been much work done discussing
tone modeling to improve tone recognition accuracy.
The most popularly applied is the frame and the HMM
based approach!" . In addition, other approaches such as
the stochastic polynomial tone model ( SPTM) pro-
posed in Ref. [2] and the decision tree based tone

model"!

have also been proposed.

In state-of-the-art speech recognition systems, dis-
criminative training is commonly employed to obtain
the best recognition accuracy. Among the discrimina-
tive criteria are the maximum mutual information'*,
the minimum classification error ( MCE)"' and the
minimum phone error (MPE)!""'. The recently pro-
posed MPE is currently popular for speech recognition
and can significantly reduce word error rate. The MPE
objective function is an approximation of phone accu-
racy directly related to the recognition result. The ex-
tended Baum Welch (EB) update equations used in
MPE training have the advantage of being simple to
implement as they do not require statistics from more
than one iteration of training'”’.

We focus on the HMM-based approach and inves-
tigate discriminative training of the HMM based tone
model which is referred to as the minimum tonal error
(MTE). After obtaining the discriminatively trained
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tone models, we propose a method to discriminatively
integrate tone information into the existing systems. In
previous work on tone modeling incorporation such as
in Refs. [2 — 3], a global acoustic and tone model
weight is commonly applied which may not obtain an
optimal result. Liu et al. '™ proposed an MCE based
stream weight optimization for audio-visual LVSCR.
Inspired by this work, we propose discriminative train-
ing on model weight using the EB algorithm under the
MPE criterion. Results evaluated based on tone classifi-
cation and large vocabulary continuous speech recogni-
tion tasks indicate the effectiveness of both proposed
methods.

1 Minimum Tonal Error Training

Let I'= {I,}]_, be the 5 tone classes and I" =
{I",;}], be the J; sub models of class I';. Given R ton-
al syllables, let O, {r=1,2, ..., R} be the observation
frames for syllable r. The MTE objective function is
an approximation of tone recognition accuracy and can
be expressed as a sum of tone accuracy weighted by

model posterior probability:
5.J;

Fye(I) = z 2 P(I;; | 0)Acc(I';, I') (1)

roi=lj=1
where P (I, ; | 0,) /is the posterior probability from
tone model I, ;; Acc( +) is the accuracy measure and
we have A(I',;, I',) =1 if I";; is the correct tone I,
from transcription and O otherwise (There might be a
different model belonging to the tone class). The ob-

jective of Eq. (1) can be written as
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where ™" is a scaling factor for reducing the dynamic

range to prevent domination by one model. To maxi-
mize the objective function, an optimization method
using the extend Baum Welch algorithm is used. Tone
model parameters can be re-estimated iteratively based
upon parameters of previous iterations:

d
’ _ {0:?(2( O) t;:n( 0) } + Dijkm/"l‘ijkm 3
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{ im y1/Am } + ijkm
num 02 den 02 D 2 2
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(4)

where ., a',jkm, O jjm and, O-z/km are current and newly

estimated means and variances of Gaussian mixture m
in state k of model I"; .; and D

L jem 18 the positive smoot-

hing constant. Several statistics in Eqs. (3) and (4)
need to be calculated before updating the model param-
eters:

R r
Vi = 33 V(1) max(0, yiTF) (5)
r t=1

where vy, (1) is the within model Gaussian posterior
occupancy of the mixture component m in state k for
tone model [’; ; at time 7 and can be calculated through
a forward- backward pass; v~ =y, (Acc(I;) -

MTE
Cay g

I, ;cM" is the average tone accuracy for all models,

0Lj? dvg

)» 7., is the tone model posterior probability from

i.e.,
5.J;

A=Y P, 1 0)Ace(T,,, T,)  (6)

avg
i=1,j=1
the sum-of-data 6}, (O) and

ijkm

sum-of-squared-data §:"( 0*) in Eq. (3) and (4) are

ijkm

For numerators,

listed as follows:
T,

Om(0) = Y Z7,-jkm(t)maX(0,7?4,-TE)0(t) (7

ljklrl
Tf

R
2 Z ')’i/km(f) max(0, ,yf"I]TE) 02( )
rot=1

(8)

The 'yj;i',’n in Egs. (3) and (4), the sum-of-data and
sum-of-squared-data for denominators ¢, (O) and
(O®) can be obtained by replacing ;= with
—y;% in Egs. (5),(7) and (8). Transition probability
and mixture weight have similar forms as proposed in
the MPE/MWE training and will not be discussed re-
dundantly. More details of these statistics can be found

num(O )

ijkm

den
t/km

in Refs. [6 —7]. From the above we can see that the

underlying characteristics of MTE are similar to the
MPE based approach. Those hypotheses from the right
tone will have higher accuracy than average and pro-
vide positive contributions, weighted in proportion to
the tone model posterior likelihoods and the differences
between tone accuracy and average accuracy'’

2 MPE Based Model Probability Weight
Training

2.1 Tone modeling integration framework for
LVCSR

The tone modeling integration framework can be
expressed as

P09y = [P0, 1&)" 9

where P (O, | &) is the i-th model probability from
model &;, and 7, is the model probability weight for
&;-Eq. (9) can be rewritten as
P(O]q) =P(O, [ A)"P (O | D)"p (1] L)™
(10)
where O, are acoustic feature observations for arc g
and P(O, | A ;) 1s the probability from acoustic model
A,s Oy is tone related feature for the segment; P( O,
| I') is the tone model probability. P, (- ) is the GMM
based duration model in Ref. [2]. The likelihood of
the length [ generated by the tone pattern I”;; can be
expressed as

pL(l ‘ Fi,j) z lem N(l _/'Lt/m’a- I_[Wl) (11)

where w,jm, /.L”m and o, are the weight coefficients,

ijm
means and variances of mixture component m for mod-
el j of tone i. In Eq. (9), n,, 7, and 7, are the model
weights which are to be trained as discussed in later
part of this section.

Since the acoustic models and tone models are
separately trained, the weighted distributions are essen-
tial in obtaining an optimal result. And another reason
for such integration lies in the diversity of the models,

e., there are different tonal modeling techniques oth-
er than frame-based HMMs. Therefore, the generalized
framework of tone model integration in Eq. (9) is rea-
sonable when these heterogeneous models are integrat-
ed into continuous speech recognition.

2.2 MPE objective function

The model weights are trained according to the
MPE objective function. Given a training set of obser-
o={0,...,0 0,}, the MPE
criterion for acoustic modeling is to minimize the aver-

vation sequences

us o

age phone error of the observation sequences using the

. . 6
objective'":
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v X PO, | )" P(s)"" Ace(s)

Fue(A, Tm) = e MPE MPE
MPE n ; 2 P(O, ‘ )" P(s5)"

s'eS

(12)
where A, I', and x are the acoustic model, the tone
model and the model dependent weight matrix, respec-
tively; P(O, | s) is the acoustic score (including the
tone score) for sentence s and P(s) is the language
model; """ is a scaling factor for reducing the dynam-
ic range for acoustic scores; Acc(s) is the raw phone
accuracy for hypothesis s and can be calculated in
terms of the sum of the accuracy of each arc contained

in s:
Acc(s) = Y Acc(q) (13)
qgeS
where Acc (¢g) is phone arc accuracy and defined
ast®”!
—1+2e(q,z) if z and g are the same phone
Acc(q) = max{ . .
< | -1+e(q,z) if z and g are different phones

where e( g, z) is the ratio of overlapped lengths to the
transcription length of arc z. More details of the MPE
calculation can be found in Refs. [6 —7].
2.3 Extended Baum Welch model weight optimi-
zation
Denote the model dependent weights as n =
[7,:15%,» where 7, is the i-th model weight for
model combination b. B is the number of total possible
model combinations and / is the number of models for
each combination. In order to satisfy positive and sum-
to-one conditions, the probability weight can be opti-

mized with the EB algorithm'"":

m,[( OF (A Iy m) N C)
_ 0, ! (14)
7717,: an,i(BFMPE(A,F,n) +C)
i Ny, ; n

where 7, ; and 7, ; are the current and the newly esti-
mated model weights, respectively; C is a constant
used to ensure positive probability weight. According
to the chain rule, the differential of Fyp; w.r.t a cer-
tain model weight in (14) can be calculated as

OF \pe (A, Iy 1) _ OF e (A, Ty 1) dlog( O ‘ q)

o, ~ alog(0 | g) am;
(15)
The first item can be computed as
0F e (A, I, m) _ MPE_ MPE (16)

alog(0[q) ~ " 7
where yZ“PE =y,(c(q) - cﬁE), v, is the posterior
probability of passing arc g, c¢(gq) is the average

phone accuracy for all of the sentence hypothesis that

MPE
avg

contains arc ¢, and c,,, is the average accuracy of all

the hypothesis in the lattice. The second item in Eq.
(15) is computed by alog( O | q)/9m, =log( O, | £,).
By substitution and rearrangement, the iterative upda-
ting function for weight training can be written as
KMPE')’:APE 15, 10g( 0, ‘ &) ‘ 2t Cn,,

Z (KMPE')’qMPE M, 10g(0; | &) | T Cm0)

(17)

!/
N, i

3 Experiments

3.1 Front-end configurations

The acoustic feature of each frame is represented
by a 39 dimensional feature vector, consisting of 12
MEFCCs and normalized log energy and their delta and
acceleration. The tonal speech feature includes the
normalized log energy and its first and second deriva-
tives, the FO and its first derivative. The pitch detec-
tion algorithm is sub-harmonic summation ( SHS)
based with a dynamic programming technique to re-
move pitch errors'" .

3.2 Database

The experiments are performed on a large vocab-
ulary continuous Mandarin speech recognition data-
base. The corpus from Microsoft Research Asia''! is
used for training. The database contains read speech of
about 31.5 h from 100 male students, for a total of
19 688 utterances and 454 294 tonal syllables. In the
testing phase, the MSR!""! test uses an additional 0. 74
h 500 utterances (9 570 syllables in total) from anoth-
er 25 male speakers. Speech waveforms are sampled at
16 bit and 16 kHz.

The baseline of continuous speech recognition
system uses context dependent triphone units for mod-
eling the Mandarin tonal syllables. After state-tying
there are 2 392 tied states. Each state is composed of 8
Gaussian mixtures. For tone modeling, each HMM has
3 emitting states with 16 Gaussians per state.

3.3 Results

The first set of experiments is conducted to clas-
sify the tonal syllables in the test utterances to evalu-
ate the effectiveness of MTE training. We performed
the tone classification task with models trained by dif-
ferent methods. Tab. 2 demonstrates the recognition
results. The ML _ CI, ML _ CD are respectively the 5-
context independent (CI) HMM tone model and the
23-context dependent (CD) tone model described in
Ref. [ 12] trained with maximum likelihood ( ML).
We have done MTE training from different initial
models of ML _CI to MTE _CI and from ML _CD to
MTE _CD, respectively. The scale factor in Egs. (1)
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and (2) is empirically selected with 18, and constant
D in Egs. (3) and (4) is set to D =Eyfji‘,‘” and E =2.
Results show that MTE introduces about 4. 4% and
4.2% absolute (10.6% and 10.9% relative) im-
provement on recognition rate compared with ML _CI
and ML _ CD, respectively. The last line in Tab. 1 is
from MTE _CD + DM (combination MTE _ CD model
with duration model, DM), which yields the best rec-
ognition results. Tab. 2 shows the details of MTE iter-
ations. It can be seen that 4 and 5 iterations of MTE
training obtain the best results.

Tab.1 Tone classification test results

Tone recognition accuracy/ %

Tone model
Tone 1 Tone 2 Tone3 Tone4 Tone5 Average

ML _CI 74.6 549 43.2 60.3 57.7 58.68
ML _CD 75.6  57.9 48.3 62.7 59.5 61.37
MTE _CI 75.5 57.3 45.3 71.1 50.7 63.07
MTE _ CD 76.4 60.7 51.8 72.9 49.0 65.60
MTE_CD+DM 75.6 61.8 53.1 73.3 55.4 66.51

Tab.2 Tone recognition accuracy in MTE training %

Tteration

Tone model
0(ML) 1 2 3 4 5
MTE _CI 58.68 61.13 61.82 62.75 62.93 63.07
MTE _CD 61.37 62.83 64.01 65.03 65.60 65.28

Tab. 3 gives the results of MTE trained tone models
and MPE based model weight training when integrated
into the continuous speech recognition task. Recognition
is carried out in two passes. The first pass is a normal
time-synchronous beam search with the MSR baseline a-
coustic model and the output of this pass is a word lat-
tice. The second pass is a dynamic programming search
within the lattice including an acoustic model and tone

models to find the most likely path.
Tab.3 Large vocabulary continuous speech recognition results

Tasks System Tonal syllable Er.ror
accuracy/ % reduction/ %

Baseline 51.34 —

Tone ML _CI 55.41 8.4
model ML _CD 56.53 10. 6
test MTE _CI 57.46 12.6
MTE _ CD 58.39 14.5

MPE 58.35 14.4

Model MTE _ CI + MPE 61.12 20.1
weight  MTE _CD + MPE 62. 04 23.0
test MTE _CI + MPE + WT 63.77 25.5
MTE _CD + MPE + WT 64. 62 27.3

The upper part of Tab. 3 demonstrates the results
of integrating different tone models. When the ML _ CI
is added into the system, the tonal syllable accuracy
improves from 51. 34% to 55.41% . The MTE trained
MTE _ CI models improve the accuracy to 57.46%.
The MTE _CD model improves the accuracy from

56.53% to 58.39% , about 1. 9% absolute (4.2% rela-
tive) better than ML _ CD in continuous recognition
tasks. From Tab.1 and Tab.2, we can see that the MTE
trained models are better than the ML trained models in
both tone recognition and continuous speech recognition
tasks.

The lower part of Tab. 3 shows the results of
model weight training (WT). We train 7, and 7),, and
the duration model weight is not considered. Before
WT is performed, the model weights are initialized
from global weights. The optimal global weights can be
selected manually by testing the MPE objective func-
tion for all the training utterances. However, the com-
putation may take a lot of time so, for simplicity, this
is not done. Instead, the global weights are first selected
as n, =7, =0.5 for all model combinations. Constant
C in Eqgs. (14) and (17) is set to C=Emaxf:1(;<quPE .
1,.102(0, | £,)), where E =300 is empirically selected
by evaluating the MPE objectives of 200 sentences
from the training data for speed and convergence. Since
the acoustic score and tone score can be pre-computed,
the WT training is very efficient (about 0. 01 RxT on a
P4 2. 8 GHz CPU). In the training phase, there are a to-
tal of 1 806 565 unique model combinations trained.
And in the testing phase, those model combinations not
trained are given the default values.

The MPE system uses the MPE-trained acoustic
model for recognition and the accuracy is 58. 35% . The
MTE _CI + MPE and MTE _CD + MPE run recognition
with the MPE-trained acoustic model and tone model
of MTE _ CI and MTE _ CD, respectively. MTE _ CI +
MPE + WT and MTE _CD + MPE + WT is to perform
model weight training after the MPE + MTE _ CI and
MPE + MTE _ CD. MTE _ CI + MPE + WT and MTE _
CI + MPE + WT introduce absolute 2. 7% and 2.6%
improvement, respectively, whereby we can see the ef-
fectiveness introduced by MPE based weight training. It
is also shown that the MTE CD + MPE + WT ap-
proach leads to the best performance. A relative
27.3% gain in comparison with the MSR toolbox
baseline. Fig. 1 shows the MPE objective function and

65.01 64.62 64.50
64.5 6.6
S
€ &0 ‘6’42
Q
E 6.5 6.2 2
8 =}
2 63.0 -
=}
£ 6.5 > g
& / 5.6 %
262,04\ /: © 3
e 62.0 " —a— MTE_CI+ MPE +WT accuracy{ 5.4 &
61.5¢ -a--MTE _CD + MPE + WT objective] 59 =
6&13 --&- MTE _CI + MPE+WT objective |~
) 1 2 3 4

Iteration
Fig.1 MPE weight training iterations
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recognition accuracy changes. It can be seen from the
figure that in the 4th iteration, recognition results drop
slightly while the values of the MPE objective function
still increase after the 4th iteration, indicating that the
WT has reached overtraining.

4 Conclusion

We have evaluated discriminative training of tone
models which is referred to as the MTE training. When
integrating the discriminatively trained tone models in-
to continuous speech recognition, we consider the use
of a discriminative weight optimization based on the
MPE criterion. Both methods produced substantial rec-
ognition improvements in tone classification and con-
tinuous speech recognition tasks. The MPE based mod-
el weight training also provides a promising framework
for optimal fusion of heterogeneous features or models.
It can be easily extended to tone modeling techniques
other than HMM such as the SPTM and the decision
tree based tone model”™ or even the audio-visual
speech recognition case.
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