Journal of Southeast University (English Edition)

Vol. 23, No. 2, pp. 216 —220

June 2007 ISSN 1003—7985

Dynamic software allocation algorithm for saving power
in pervasive computing

Han Songgiao

Zhang Shensheng

Zhang Yong Cao Jian

(Department of Computer Science and Engineering, Shanghai Jiaotong University, Shanghai 200240, China)

Abstract: A novel dynamic software allocation algorithm suitable for pervasive computing environments is

proposed to minimize power consumption of mobile devices. Considering the power cost incurred by the

computation, communication and migration of software components, a power consumption model of component

assignments between a mobile device and a server is set up. Also, the mobility of components and the mobility

relationships between components are taken into account in software allocation. By using network flow theory,

the optimization problem of power conservation is transformed into the optimal bipartition problem of a flow

network which can be partitioned by the max-flow min-cut algorithm. Simulation results show that the proposed

algorithm can save significantly more energy than existing algorithms.

Key words: power aware; software allocation; code mobility; graph theory; pervasive computing

In pervasive computing''’, mobile devices have
the potential to become powerful tools to access infor-
mation and applications from anywhere at any time.
However, as mobile devices become more widely used
for more advanced applications, their power limitations
are becoming more apparent. Although exponential im-
provements have occurred in hardware components,
such improvements have not occurred in battery tech-
nology, and we do not anticipate any significant chan-
ges in the future'”.

The wireless connectivity to a server provides a
great chance to offload computation from a mobile de-
vice to a powerful server for saving the energy of the
mobile device. In the fields of resource assignments
and task scheduling, most researchers focus on the im-
provement of service performance and workload bal-
ance among machines, and little research effort is dedi-
cated to conserving power”'. Recently, the idea of
using remote processing'” to save power has been
explored by some significant simulations and experi-
ments”” . But these approaches are static component
assignment approaches which cannot adapt to environ-
mental changes. Besides, remote processing only allows
component movement from the client to the server
rather than bidirectional component movement which is
necessary in pervasive computing. Thus, based on net-

Received 2006-10-30.

Foundation items: The National Natural Science Foundation of China
(No. 60503041), the Science and Technology Commission of Shanghai
International Cooperation Project (No.05SN07114).

Biographies: Han Songgiao (1975—), male, graduate; Zhang Shen-
sheng (corresponding author), male, doctor, professor, sszhang @ sjtu.

edu. cn.

work flow theory, this paper presents an optimal and
dynamic software allocation algorithm to conserve mo-
bile device energy.

1 Power Consumption Model

1.1 Power consumption of mobile devices
Suppose a resource-constraint mobile device,
called client, and a resource-rich computer, called serv-
er, are connected by a wireless network. A component
based application runs on the two hosts. From a soft-
ware perspective, we classify the power consumption of
the mobile device into three types of costs: computation
cost, communication cost and migration cost.
Computation cost is the cost incurred by the exe-
cution of a component or an application. For compo-
nent c;, its computation cost can be calculated as
e.(¢;) =a.(c;)p.t.(c) ¢ €S,
e.(c;) =a,(c)p;it(c;) ciESs}
where S, and S, are component sets on the client and

(D

the server, respectively; a.(c;) and o (c;) are the pow-
er consumption coefficients of c¢; on the client and the
server, respectively; p. is the mean power consumption
rate when the mobile device executes and p, is the
counterpart when the mobile device is idle; #,(¢;) and
t,(c,;) are the execution time of ¢, on the client and the
server, respectively. Then the computation cost of the
application can be calculated as

E, = zac(ci)pctc(ci) + Zgas(ci)pits(ci) (2)

The communication cost is incurred by sending
and receiving data from ¢, on the client to ¢; on the
server. It can be calculated as

Dynamic software allocation algorithm for saving power in pervasive computing 217

s(¢i € P,
e(c,c;) =)\bl
' (3)
S(st Ci)pr
er(ci?cj) =)\b

where s(c;, ¢;) is the size of data transferred from c; to
¢;s p, and p, are the mean power consumption rates
when the client sends and receives data, respectively; A
is a network coefficient; b, and b, are available sending
and receiving network bandwidths, respectively. Then
the total communication cost between the two hosts can
be calculated as
E, = 2 [s(ci’ cj)ps +S(cj’ci)pr] (4)
cieSacies, Ab, AD,

The component migration cost is induced by mov-
ing ¢, from the client to the server, and vice versa. It
can be calculated as

_S(C,-)Ps
e (c) = b, -

where s(c¢;) is the size of c,. The total migration cost of
the application is expressed as

s(c;)p, s(c;)p,
E,. = + 6
S T E w9
where S, and S, . are the sets of components moving

from the client to the server and vice versa, respective-
ly.

Thus, when the application runs N cycles, the total
energy consumption is calculated as

E =NE, +NE, +E_, (7)

Note that there are also other estimation methods
of energy consumption'”. But the proposed algorithm
is independent of estimation methods.

1.2 Problem formulation

Software architecture of an application can be re-
presented by an undirected graph where vertex v, repre-
sents component ¢; and edge e; represents the interac-
tion between components ¢, and c¢;. To denote the three
types of costs, we add the weights to the vertices and
the edges in the graph, called the cost graph. The
weight of vertex v; is a triple set (C,, (¢;), C.(c;),
C.(c;)), where C,(c;) denotes the migration cost of
¢;, C.(c;) and C,(c,) are its computation costs on the
client and the server, respectively. The weight C_(c,,
c;) of edge e; is equal to the communication cost be-
tween ¢, and c;.

Thus, the problem of the optimal software alloca-
tion on the client and server for minimizing power con-
sumption can be transformed into the optimal biparti-
tion problem of the cost graph, subject to the following
minimal power consumption formula:

min(2 C.c) + 2 C(c) +

cieSe cjeSs

Cene) + X Culed] (®)

e(cjc)) €Se creSy
where S, is the set of all edges connecting components
on different hosts, and S is the set of migrating com-
ponents.

2 Software Allocation Algorithm

2.1 Characteristics of software architecture

As two major elements in software architecture,
components and connectors have some attributes that
can influence software allocation between machines.

According to component mobility'®, components
can be classified into two categories: fixed components
and mobile components. The former are located on a
machine at runtime while the latter can move between
machines during execution. If component c; is fixed,
C,(c;) = . If ¢, cannot run on the client or the serv-
er, C.(c;) =w or C/(c;) =oo.

Given components ¢; and c¢; connected by a con-
nector, the movement of one component may affect the
location of another component. From this perspective,
connectors or edges have three major types: link, pull
and stamp.

e Link type means ¢, and c; can be located on dif-
ferent hosts. When ¢; moves from one host to another,
c¢; will not move away or move along with c;. The
weight of the link type of edge is equal to C.(c;,¢;).

e Pull type means ¢, and c¢; must be located on the
same host. When ¢, moves from one host to another, c;
must move along to the location of c,. The weight of
the pull type of edge is infinite.

e Stamp type means c¢; and a type instance of c;
maybe located on the same host. When ¢; moves from
one host to another which has a type instance ¢/ of c¢;,
¢, cuts off the interaction with ¢; and resumes setting up
an interaction with ¢; on the new host. The weight of
the stamp type of edge is zero.

Suppose that an application is comprised of four
components, called a, b, ¢ and d. Its software architec-
ture with connector types is shown in Fig. 1. Fig. 2
shows the cost graph of the application. Initially, d
stays on the client while others stay on the server.

Fig.1 Software architecture with connector types

218 Han Songgiao, Zhang Shensheng, Zhang Yong, and Cao Jian

1Cu(8),C.(8), C,(8)}

C.(b,d)
eéd '

/ g
RS-
E’% -I:,
Cc(a,c) \@/fwcc(c,d)

|

Server | Client

Fig.2 Cost graph with initial component allocation

2.2 Software allocation algorithm

The software allocation algorithm includes two
parts. First, the cost graph is transformed into a flow
network. Then the flow network is partitioned by a
max-flow min-cut algorithm.

1) Cost graph transformation

In graph theory, a flow network is a directed
graph with a source vertex S and a sink vertex 7. Each
edge has a capacity which is equal to the max allowed
flow on the edge. Based on network flow theory, the
cost graph G = (V, E) can be transformed into an
equivalent flow network G’ =(V’, E’) according to the
following steps:

Step 1 Each node v € V in graph G is trans-
formed into a node v' € V' in network G'.

Step 2 For each edge e, between nodes v, and v,
in G, two edges e; and e;; between nodes v," and v;" are
added to G’, and their capacities are equal to the
weight of ;.

Step 3 Add a source node S and a sink node T
to G'. The nodes S and T represent the client and server
machine, respectively.

Step 4 For each node other than S and T, add an
edge from S to that node and an edge from that node to
T. The capacities of the two edges may be different due
to different locations of the nodes. Let cap(e) be the
capacity of edge e, let ¢, be the edge from S to c,, and
let e, be the edge from c; to T. The capacities of two
edges can be calculated as

cap(e,) =C,(c,) +Cm(ci)} ¢ cs. ©
cap(eir) :CC(C,»)
cap(e,) =C(c;)
cap(e;) =C.(c) +Cm(cl.)} ces, (10)

For example, Fig. 3 shows the flow network that is
transformed from the cost graph in Fig.2.

2) Flow network partitioning

In a flow network G’, a feasible flow is a flow
originating from the source node and ending at the sink
node such that: 1) At each intermediate node, the sum
of the flows into the node is equal to the sum of the
flows out the node; and (2) The flow in any branch
does not exceed the capacity of that branch. The value

_____ - ——
,/eb‘ - ,-7 €sh
’ ! 7 el

e e N\

,/ /k//ba,) bd <
€ab \

r
= .

A ! ’ 7/
N AN\ e Cde, 7 s~
AN N P
NoUNg € ’ R
Nt . 5 e e
AN Cim N\ e,

PN —_— — P P
~ ~N, - -7

-

~ P
~-ey= ~-ey—

Fig.3 Flow network transformed from cost graph

of a flow is the sum of the flows out of the source
node. Then a maximum flow is a feasible flow whose
value is the maximum among all feasible flows. The
maximum flow is related to a cut set of the network. A
partition of the network creates two disjoint node sets
Viand V,and V' =V UV,,SeV,,TeV,. A cut edge is
an edge (u,v) where u eV, and v e V,. The cut set is
the set of all cut edges in G'. In Fig. 3, the cut set de-
noted by the dot-dashed line is {e),, e.,, .., €., €., €
e, }- The weight of a cut set is equal to the sum of the
capacities of the edges in the cut set.

We associate a component assignment with each
cut set such that if the cut set partitions a node into the
subset V_, then the corresponding component is as-
signed to the client. Similarly, if a node is partitioned
into V,, then the corresponding component is assigned
to the server. Thus component assignments and cut sets
of the flow network are in one-to-one correspondence.
Then we can obtain theorem 1.

Theorem 1 The weight of a cut set in the flow
network is equal to the cost of the corresponding soft-
ware allocation.

sa® ~ct?

Proof A component assignment incurs computa-
tion cost, communication cost and migration cost. The
cut set corresponding to a component assignment has
two types of edges. The first type of edges, such as e/,
e/, and e/, in Fig. 3, represent the communication cost
between components. The second type of edges are ed-
ges incident to S or T, such as e, e, e, and ¢, . If a
node, such as ¢’ in Fig. 3, on the server is assigned to
the client, it induces a computation cost on the client
and a migration cost. In network G’, the edge from the
node to 7 must belong to the cut set and it carries a ca-
pacity that is just equal to the sum of the computation
cost on the client and the migration cost (see Eq.
(10)). Moreover, no other edges that connect the node
and S (or T) are included within the cut set. In the case
that a node is on the client, the proof procedure is simi-
lar. Thus the weight of a cut set accounts for the power
consumption of the component assignment. This proves
the theorem.

Then the following corollary ensures the sound-
ness of the proposed algorithm.

Dynamic software allocation algorithm for saving power in pervasive computing 219

Corollary 1 The minimum cost of the compo-
nent assignment is equal to the weight of a min-cut set
or the value of max-flow in the flow network G'.

Proof From theorem 1, we can see that the mini-
mum cost of the component assignment should be e-
qual to the weight of a min-cut set in G'. The max-
flow min-cut theorem means that the value of max-
flow in a flow network is equal to the weight of a min-
cut set of the network. Thus the minimum cost of the
component assignment is also equal to the value of the
max-flow in G'. This proves the corollary.

Thus, we use a max-flow min-cut algorithm, such
as the preflow-push algorithm, to partition G’, thereby
obtaining the optimal component allocation and the
minimal energy consumption. This algorithm has
O(N’) time complexity. For example, if the dot-dashed
line in Fig. 3 represents a min-cut, the optimal software
allocation results are that a and b are assigned to the
server, ¢ and d are assigned to the client, and the mini-
mal energy cost is equal to cap(e),) + cap(e.,) +
cap(el,) +cap(e,) +cap(e,,) +cap(e,) +cap(e,).

3 Simulation Results

We have implemented the proposed algorithm and
applied the results to partition a game prototype. Ac-
cording to the software architecture of the game, we
construct its cost graph of communication amount, as
shown in Fig. 4. The edge weight labeled on the edge
indicates the communication amount between compo-
nents within an execution cycle,i.e. N =1.

280
180\%1}\
R N0 o 20
50— 2 140/ 6

Fig.4 Cost graph of communication amount

For component c;, its size s(¢;), execution time
t.(c;) and t,(c;) can be obtained by the profiling ap-
proach and are listed in Tab. 1. Suppose that the appli-
cation is initially located on a mobile device and runs
for N cycles. Let network bandwidth b =1 000 kbit/s,
the network coefficient A = 0.7, power consumption
coefficients a, (¢;) = a,(c;) =1, power consumption
rates p, =1.65 W, p. =2.4 W, p, =p, =p, =2.2 W
which are borrowed from Ref. [9]. Then the cost graph
is transformed into a flow network by using Egs. (1),
(3) and (5). The flow network of energy is shown in

Fig.5, where a =p.,B=p;,y =p,/(Ab).
Tab.1 The values of execution parameters of components
Nodes
G G G G o GCs Cs
s(c¢;)/kbit 680 200 360 320 100 150 560
t.(c;)/s 1 0.10 0.19 0.36 0.08 0.104 0.46
t(c;)/s 0.24 0.024 0.04 0.09 0.02 0.026

Parameters

1,7 - —
. _A- .
A0.1aN ; TNV
/,/,' \ 7N N\ K
",-,0.1901]\7-! 0 k7

<~ 2N

<Jd

~ J Pl ~.
@ SN0 46aN-P 0. 24BN + 6807)
Fig.5 Flow network of energy

When the system runs for N cycles, the average
energy consumption per execution cycle P = E/N,
where E is the total energy consumption. To validate
our algorithm, three software allocation algorithms, in-
cluding monolithic application on the client (MONO),
remote processing (RP) and the proposed algorithm,
are compared in terms of power cost. Fig. 6 shows the
simulation results where N increases in steps of 1.
MONO consumes constant energy with increasing N.
RP makes most of components move from the client to
the server, resulting in a great increase of migration
cost. When N is small, the movement of numerous
components makes RP consume more energy than
MONO. But with the increase of N, the computation
cost is much more than the migration cost. Since the
computation cost of RP is in general less than that of
MONO, the former consumes less energy than the latter
when the system runs for a long time.

Server: C
L

0, C3
0 2 4 6 38

10 12 14 16 18 20

Execution cylces N

Energy consumption per cycle

O~ W -Pmo\loo\oa
T

Fig.6 Energy consumption comparison of different algorithms

The proposed algorithm can dynamically find the
optimal software allocations when execution time (or
N) changes. When N =1, the whole system runs on the
client. Our algorithm saves about 45% energy com-
pared to RP. When 2<N <10, our algorithm moves C,

220

Han Songqiao, Zhang Shensheng, Zhang Yong, and Cao Jian

and C, to the server, which saves more energy than
MONO by about 2% to 25% and RP by about 14% to
24% . When 10 <N <20, our algorithm moves C,, C,
and C, to the server, which saves more energy than
MONO by about 26% to 32% and RP by about 13%
to 14% . Moreover, network bandwidth also influences
software allocation results. Given N =20, when b =100
kbit/s, our algorithm saves about 39% more energy
than RP, and when b =2 000 kbit/s, our algorithm
saves about 43% more energy than MONO. The simu-
lation results show that the proposed algorithm always
consumes the least energy.

4 Conclusion

A dynamic software allocation algorithm is pro-
posed to save energy on mobile devices. The algorithm
is able to reassign dynamically the appropriate compo-
nents between machines to minimize energy consump-
tion as the environment changes. Besides the computa-
tion cost and the communication cost, the migration
cost is also considered in the power consumption mod-
el, which is necessary in dynamic software allocation
but neglected by the previous static approaches. After
analyzing the characteristics of the software architec-
ture, we use network flow theory to reduce an optimi-
zation problem of software allocation to an optimal bi-
partition problem of a cost graph. It is worth emphasi-
zing that the proposed algorithm is a general algorithm
that can also allocate an application for conserving net-
work bandwidth and improving response time. As fu-
ture work, the proposed algorithm would be extended
to dynamically allocate an application on multiple ma-
chines or devices, such as sensor networks.

[1]

(2]

(3]

[4]

[5]

[6]

[7]

(9]

References

Weiser M. Some computer science issues in ubiquitous
computing [J]. Communications of the ACM, 1993, 36(7):
75 —84.

Want R, Farkas K I, Narayanaswami C. Energy harvesting
and conservation [J]. IEEE Pervasive Computing, 2005, 4
(1):14-17.

Ahmed J, Chakrabarti C. A dynamic task scheduling algo-
rithm for battery powered DVS systems [C]//Proc of
IEEE International Symposium on Circuits and Systems.
Vancouver, BC, Canada, 2004: 813 — 816.

Balan R, Flinn J, Satyanarayanan M, et al. The case for cy-
ber foraging [C]//Proc of the 10th Workshop on ACM
SIGOPS European Workshop. Saint-Emilion, France, 2002:
87 -92.

Rudenko A, Reiher P, Popek G J, et al. The remote process-
ing framework for portable computer power saving [C]//
Proc of the ACM Symposium on Applied Computing. San
Antonio, TX, USA, 1999: 365 —372.

Li Z, Wang C, Xu R. Computation offloading to save ener-
gy on handheld devices: a partition scheme [C]//Proc of
International Conference on Compilers, Architecture, and
Synthesis for Embedded Systems. Atlanta, Georgia, USA,
2001:238 —246.

Flinn J, Satyanarayanan M. Managing battery lifetime with
energy-aware adaptation [J]. ACM Transactions on Com-
puter Systems,2004,22(2):137 —179.

Fuggetta A, Picco G P, Vigna G. Understanding code mobil-
ity [J]. IEEE Transactions on Software Engineering, 1998,
24(5):342 —361.

Li Z, Wang C, Xu R. Task Allocation for distributed multi-
media processing on wirelessly networked handheld devices
[C1//Proc of the 16th International Symposium on Paral-
lel and Distributed Processing. Fort Lauderdale, Florida,
USA, 2002:312 - 317.

EEMTEPTARENHNTSRGTEEE

AT

R e

7K

5 & 1

(LB K i At 5 T4 2, LiF 200240)

WE:ATVAHBHREOLEHL,BET —HESTEEF ARG IRMERF Lk 56F
Jo T ARG L GBS AR TR TR, BT —ANEBFHEREFIRG B A E b F
HACBAL. R E PRI L R T A e A st fe Atk B e S X R AR MBREE, BT Y
W, % 6 AL) B ALy — AR W &0 AR B AL, d0)G TR A R KR SR D e) Sk R AL R AL
Yo Rt R AR B IR AR BT 4T $0e g,

KRR 0 F B AR F R 3 B ;- FE T 5

HE %S TP31I

