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Abstract: For classifying unknown 3-D objects into a set of predetermined object classes, a part-level object

classification method based on the improved interpretation tree is presented. The part-level representation is

implemented, which enables a more compact shape description of 3-D objects. The proposed classification

method consists of two key processing stages: the improved constrained search on an interpretation tree and the

following shape similarity measure computation. By the classification method, both whole match and partial

match with shape similarity ranks are achieved; especially, focus match can be accomplished, where different key

parts may be labeled and all the matched models containing corresponding key parts may be obtained. A series

of experiments show the effectiveness of the presented 3-D object classification method.
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The goal of 3-D object classification is to assign
an unknown object to a generic object class. In this pa-
per, we address the object classification problem with a
part-level method based on the improved interpretation
tree. Most existing object classification methods are im-
plemented at the surface patch level, which require
complete surface models of query objects and complex
computation'' ™.

3-D part representation has been used popularly in

. [36
computer vision'’ ™

since it is viewpoint independent,
insensitive to local variations and supported by exten-
sive psychological evidence. However, most previous
research has been directed toward object recognition
rather than generic classification.

In this paper, we propose a part-level 3-D object
classification method, which consists of the improved
constrained interpretation tree search and the shape
similarity measure. In the tree search stage, a set of in-
tegrated features and the corresponding constraints are
first presented, which reflect the individual parts’ shape
and the models’ topological information among volu-
metric parts. Then the constraints are employed to di-
rect a fast interpretation tree search by defining the ef-
ficient tree search rules. Finally, a shape similarity
measure algorithm is developed to obtain the matched
models and the assigned object class.

Received 2006-12-12.

Foundation items: The National Basic Research Program of China
(973 Program) ( No. 2006CB303105), the Research Foundation of Bei-
jing Jiaotong University (No. K06J0170).

Biographies: Xing Weiwei (1980—), female, doctor, wwxing @ bjtu.
edu. cn; Yuan Baozong(1932—), male, doctor, professor, bzyuan@ bjtu.
edu. cn.

1 Problem Description

In this paper, the 3-D object classification can be
regarded as the match between 3-D object data and
models, which can be formulated as determining the
correspondences subject to certain match constraints
between object data parts and model parts. One of the
most well-known algorithms for high-level matches in
computer vision is the interpretation tree algorithm'”,
which searches a tree for consistent model-to-data
matching pairs. Let {m,, m,, ...,m,, ...,m,} be a set of
model parts and {d,, d,, ..., dji’ ey dq} be the object
data parts, where p and g are part numbers of the 3-D
model and object data. Starting at a root node, we con-
struct the tree in a depth-first fashion, assigning one
model part to different object data parts at each level of
the tree. To deal with the possible nonexistence of a
feasible match between the current model part and the
object data parts, the “wild card” is introduced to
match a null object data part with a model part in the
tree in order to improve robustness. A path through this
tree represents a set of feasible correspondences, i.e.,
a consistent interpretation.

In this paper, superquadric-based geons ( SBGs)
are implemented to represent the volumetric parts, the
constituents of 3-D objects. SBGs combine the super-
quadric quantitative parametric information and geon
qualitative geometrical attributes, which have a power-
ful representative and discriminative capability.

2 Features, Constraints and Tree Search

The efficacy of the interpretation tree method as a
matching algorithm is the use of some constraints to
prune the branches of the tree which can lead to incon-
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sistent interpretations. In this paper, we present a set of
novel integrated part features with powerful discrimina-
tive capabilities, based on which the corresponding
constraints and tree search rules are defined to fast find
possible consistent interpretations.

2.1 Features and corresponding constraints

2.1.1 Unary features and constraints

All the following unary constraints forced by the
corresponding features are applied to the newest pair
(m,, dj’_) in an interpretation tree, where i =1,2, ..., p
and j, =1,2,...,q.

(D Part connection number FU,,.: It is the num-
ber of parts connecting with the current part. Consider-
ing the FU} . of model part m, and the FUJ:, . of ob-
ject data part d, , we define the constraint for FU,,,,, as

FU,,,.,-constraint(i, j,) = True
iff FUp, = FURi (1)
@) Volume rate FU,,,.: The ratio of current part
volume to the whole model volume, reflects the part’ s
spatial occupancy. The constraint forced by FU,,,. is
FU,,,.-constraint(i, j,) = True
iff |FUY,, - FUY,. | <e, (2)

This constraint says that the volume rate FU,,,, of
m; must differ from that of d; by no more than a
bounded measurement tolerance.

3 3-D spherical harmonic descriptor FU,:Itis a
3-D rotation invariant describing volumetric part
shape'” . Since FU_,, is a vector, we let

FU,,-constraint (i, ;) =True
iff | FUg, - FUg [ <e, (3)

@) Geon type FU,.,.,: Geon type is the qualitative
attribute of volumetric parts. The related constraint is
defined as

FU,,,-constraint(i, j,) =True

geon

. mp dj;
iff FU,, = FU, (4)

(5 Elongation FU_,,: This feature consists of two
elements FU jone = A/ Apeq a0d FU om0 = A ped” Ain> 1N

which a,,,, a,;, are the maximal, medium and
minimal superquadric size parameters of volumetric
parts along x, y, z axes, respectively. Here, we let
FU ,,, -constraint(i, j,) = True
iff[| FUG,, - FU, |<e. (5)
2.1.2 Binary features and constraints
Suppose that current matching pairs are {(m,,

a

med >

dj,») },i=1,2, ...,k and given a new pair (m,,, djm),
the used binary features and corresponding constraints
(my,,d;, im;.d;) are as follows:

(D Connections FB,,,,..: This feature represents
the connecting relationship of one part with other parts
of the model and the related constraint can be written
as

FB -constraint(k +1,j,,,;,7;) =True

connect

iff FBybl" = FBs (6)

2 Connection type FB,ouype : It reflects the number

of intersections between two parts, which corresponds
to FB The FB -constraint is defined by

connect * contype

FB,opiype-constraint(k +1, j, .5 i, j;) =True
. my . m; d;, .d;

lff FBcoknlylpe - FBcgﬁ{ylpe Y (7)

@ Volume ratio FBy,,,: It is defined as the ratio

of one part volume to another part volume. The related

constraint is the difference of V,, /V, and Vd/_k 1/ Vi -

M1
It must be restricted within a bounded measurement
tolerance for i =1, 2, ..., k, which is formulated as
FB,,,,-constraint(k + 1, j,,,;,j;) =True
iff | FBYAL™ — Bk i | <e, (8)

The above tolerances ¢,, ¢, €. and ¢,, are prede-
fined empirically.

The unary features and constraints represent the
volumetric part shape, while the binary feature con-
straints mainly reflect the topological structure of the 3-
D object, all of which are efficient for the tree search.
2.2 Constrained tree search

Given these feature constraints, the constrained
tree search process consists of a depth first search. Sup-
pose that the search process is currently at some node
at level k in the interpretation tree and with a consistent
partial interpretation given by

I, ={(m,, dj|)9 (my, dj2)9 N djk) }
We now consider the next model part m, ,, and its

possible assignment to object data part d; _,

where j, .,
varies from 1 to ¢ +1 and ¢ is the number of object da-
ta parts. This leads to a potential new interpretation

Ly ={(m. d;),....(my, d; ), (my .y, d; )}

Due to implementing volumetric parts instead of
surface patches, the computational complexity is de-
creased greatly, which allows for defining the looser
pruning in the tree search rules so that more possible
consistent interpretations and matching results are ob-
tained.

The following rules are defined and applied in the
constrained tree search.

o If (my,,,d; ) is a wild card match, then the new

interpretation I, ,, is consistent and we continue down-
ward in our search.

o If m, , and d;
fy that the unary constraints hold for the pair (m,,,
d, ), and that the binary constraints hold for the pairs
[(m,,d;, ), (m,d )], fori=1,2, ... k.

e If N, unary constraints and N, binary constraints
are true, where N, and N, can be predefined as the
threshold according to the required matching precision,
then the new interpretation [, ,, is a consistent interpre-
tation, and we continue our depth first search. Other-

are both real parts, we must veri-
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wise, [, ,, Is an inconsistent interpretation; in this case,
we increase the object data part index j,,, by 1 and try
again with a new [, ,,, until j,,, =g +1.

e If the number of wild card matches along one
branch is beyond a predefined threshold, then this
branch is considered to be an inconsistent interpreta-
tion.

However, if the search process is currently at
some node at level k in the interpretation tree, and has
an inconsistent partial interpretation given by

I, ={(m,, djl)» (my, djz)’ cees (1, djk) }
then it is in the process of backtracking.

Once the search process reaches a leaf of the in-
terpretation tree, a consistent interpretation is achieved,
which represents a feasible match between the model
and the object data. Finally, one or more consistent in-
terpretations are obtained as the feasible part matches
between the model and the object data. We may get the
best match according to the similarity measure compu-
tation, which is described in section 3.

3 Similarity Measure Computation

Based on the obtained consistent interpretations
and the presented feature constraints, a similarity meas-
ure computation algorithm is developed to achieve
matching results with similarity ranks. The algorithm
consists of the following: (1) Part similarity measure; (2)
Whole and partial match; 3) Focus match on the la-
beled key parts; @) Classification.

Definition 1 Let one certain object class include

r models M, with [ =1,2, ..., r, the unknown object da-
ta D and model M, are represented as a set of parts
M, ={m ,,m ,, ...om,,....m }

D={d.d,,....d,,....d,)

q
The nodes of the interpretation tree denote the matc-
hing pairs (m, ;, d; ) of M, and D for i=1,2,...,p and
Ji=1,2, ..., q. Each part m, ; or d; can be formulated as
fm:{ul,uz,...,uk,...,un}} 9)
fo={visva, s vy oy, )
where u, or v, may be a scalar or a vector in accord-
ance with the features described in section 2.
3.1 Part similarity measure
Part similarity is computed on one node along a
feasible path obtained from the constrained tree search
stage, 1. e. the matching pair (m,;, d;) of one model
part and the object data part. Due to the different
effects of features on the shape similarity measure, it is
natural to assign different weights {w,, w,, ..., w, ...,
w, }. The weight values are determined empirically, and
reflect the experience by some tests on the importance
of each feature.
First, for two corresponding features u, and v,, the

feature similarity Fsim (u,, v,) can be calculated by

Eq. (10) or (11). For FU,,,,, FU,,, and FB ...
FB_nype» EQ- (10) is implemented,
. 1 if u, =v,
Fsim(u,, v,) = {0 2y (0

And for the other features, Eq. (11) is employed,

= vl

1 -
Vk”)

1<k<n

(11)

Then the part similarity measure Psim (m, ;, d;)

Fsim(u,, v,) =

max( Huk

bl

of m,; and d; is calculated by

s

Psim(m, .. d,) = w,, > wFsim(u,,v,) +
k=1
S+

wy 3, wBsim(u,, v)  (12)

k=s+1
where s and ¢ are the numbers of unary and binary fea-

tures, respectively; part similarity measure Psim is the
sum of the former Psim; and the latter Psim, corre-
sponding to the unary and binary feature constraints,
respectively, in which w,, and w,; are the related nor-
malized weights. In particular, for the nodes at the first
level, Psimy is always assigned to 1; and the wild card
matches have no contribution to the part similarity
computation, and thus are assigned to 0.
3.2 Whole and partial similarity measure

Model shape similarity measure Msim, of model

M, and object data D corresponds to an obtained feasi-
ble consistent interpretation. We define two kinds of
matches for the model similarity measure: whole match
and partial match. Whole match focuses on the whole
shape similarity of M, and D; while the part number ¢
of object data D is less than the p of model M,; i.e.
the object is superimposed on the 3-D model. There
also exists a partial match that emphasizes the local ac-
curate correspondence.

Let the similarity of part pair (m,;, d;) in a con-
sistent interpretation be Psim;. The whole similarity

measure Msim," of M, and D can be calculated by
max(p, q)

Y, Psim(m, . d,)

Msim)' = —= (13)
max(p, q)

where p and ¢ are the part numbers of model and ob-
ject data, respectively. The similarity measure Msim)
of the partial match is evaluated by

max(p, q)

Y. Psim(m,,,d,)

=l (14)
q

. P
Msim, =

where ¢ is less than p.
3.3 Focus matching similarity

Generally, the parts concerned for matching of the
same object data are different according to different
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tasks or aims, which is just the motivation of the focus
match proposed here. In focus match, the different key
parts of the object data may be labeled and all the
models containing the corresponding key parts can be
matched. Let the labeled key parts number of object
data be Np,,. Then two supplementary constraints
should be added to the tree search especially for focus
match. First, only the model with part number p that is
not less than Ny, may be passed onto the interpreta-
tion tree search process; secondly, the allowed number
of wild card matching pairs along a path must not be
more than p - Npyeys otherwise, the branch will be
pruned. These two constraints ensure that all the key
parts of object data will have real matches. The focus
matching similarity is achieved by

NDkey

2 Psim(m, ;, d;)

FOsim = ! N (15)
Dkey

3.4 C(lassification

The unknown object is classified based on the cal-
culated class similarity measures.

1) Selecting all the models with similarity meas-
ures more than a predefined threshold, the class similar-
ity measure is computed by averaging the model simi-
larity measures between all the selected models and the
unknown object data.

2) The unknown object data are classified into the
object class that has the highest class similarity meas-
ure obtained in 1).

4 Experimental Results and Evaluation

We construct a number of 3-D models for each
object class according to the actual diversity of the
class. The models within one object class are similar
but still exhibit significant variation among exemplars.
24 object classes are built and used in the experiments.
The domain of the objects explored is that of some
man-made commodities. We match the query objects
selected randomly from the 3-D library with all the
models in the library and analyze how well the result
ranks correspond to human similarity classification of
the models.

In each figure below, the leftmost column shows
the query object, the middle columns show the first five
closest models in the library which are ranked from left
to right according to shape similarity measures, and the
rightmost column is the classification result with object
class label and the class similarity measure.

4.1 Whole match and partial match

Fig. 1 shows three experiments on the whole
match. In each result, the query object to be classified
is the first of the similarity ranks and the corresponding

similarity measure value is 1. It is obvious that the
ranked models according to the obtained similarity
measures are consistent with human visual perception
on object shape similarity.

Model similarity rank

Query object Object class

Class 14

Lamp
lamp3 0.8944

1.0000 | 09564 | 09123 | 08768 | 0.7266

Class7

Hammer
hammer4 | hammer3 | hammer2 0.8085

Class 22

Table
| tablel | table7 | stool7 | table9 | table5 0.7625
| 1.0000 [ 09590 [ 09319 | 08471 [ 08384 |

’ Query 3

Fig.1 Whole matching results of the objects belonging to
the lamp class, hammer class and table class

Fig. 2 shows two experiments on cup class and
stool class respectively. In the first experiment, the que-
ry object is a cup with only one part of the body. In the
case of whole match, the matched models with higher
similarity measures are the cups which consist of only
one part since they have higher whole shape similarity
to the query cup, such as cup 10 and cup 9 in the sha-
ded cells. As for the partial match, it is obvious that
cup 6 and cup 5 contain the more similar part, cup
body, to the query and have better local shape similari-
ty, and thus the higher similarity measures are
achieved. In the second experiment on stool class, the
obtained models by whole match have closer global
topological structure and shape to the query, while the
models from partial match contain the more similar
“sub-model” to the query object in spite of different
global structures. The experimental results clearly show
the different focuses of whole match and partial match.

Query object Model similarity rank Object class

Whole Class 1
-

match

Partial

match -

Cup
cupll cup6 cup3 0.6924

1.0000 0.8001 0.7856

Class 1

Cup
0.7986

Class 21
Whole

match

Stool
stool16 stooll4 table 7 0.6800
1.0000 0.9435 0.7580

Class 21

Partial

match Stool

stool17 0.7803

| 07808 |

stooll3
| 0.9209

stool14
| 09435

stool16
| 1.0000

| 08316

Fig.2 Comparison experiments of whole and partial match
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4.2 Focus match on key parts
Fig. 3 shows some experimental results of focus
match. Take the chair class for instance. As for the
same query chair, the labeled key parts are different, as
illustrated in the left column of “key parts”, and,
hence, the different matching results are achieved. In
the comparison experiments on the chair class, six key
parts including one seat, four legs and one back bar, are
labeled for the first test, and the six parts with a cross-
bar between two legs instead of the back bar are la-
beled for the second test. In the results of the second
experiment on chair class, the models with the corre-
sponding key parts are matched successfully.
Query object
il o

Key parts

Model similarity rank Object class

Class 12

Badminton
1 badminton2 tabletennis] |tal 2| tennis4 0.9950
1.0000 0.9899 0.9366 0.9357 0.8748

Class23

Chair
chairl2 chairll chair4 chairl6 chair5 0.8845
1.0000 0.8776 0.8714 0.8550 0.8183

Class23

Chair
chairl2 chairl 3 chair5 chairlO chair2 0.8269

Key parts
1.0000 | 0.8381 0.8360 | 0.8211 | 0.8169

Fig.3 Focus matching results of the objects belonging to
the badminton racket class and the chair class

5 Conclusion

In this paper, a part-level method based on the im-
proved interpretation tree is proposed to solve the 3-D
object classification problem. The method mainly con-
sists of the improved constrained interpretation tree
search and the developed shape similarity measure com-

E TR BEMREGR=

FREE x)

putation. By this method, both whole match and partial
match can be accomplished with shape similarity meas-
ures. In particular, the focus matching computation can
be completed on different labeled key parts, which is
suitable for different specific tasks.
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