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Abstract: To solve the extended fuzzy description logic with qualifying number restriction ( EFALCQ)

reasoning problems, EFALCQ is discretely simulated by description logic with qualifying number restriction
(ALCQ), and ALCQ reasoning results are reused to prove the complexity of EFALCQ reasoning problems. The
ALCQ simulation method for the consistency of EFALCQ is proposed. This method reduces EFALCQ
satisfiability into EFALCQ consistency, and uses EFALCQ satisfiability to discretely simulate EFALCQ sat-
domain. It is proved that the reasoning complexity for EFALCQ satisfiability, consistency and sat-domain is

PSPACE-complete.
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Description logics (DLs)'" are a class of knowl-
edge representation languages with well-defined se-
mantics and determinable reasoning methods. Many ap-
plications often need to represent fuzzy knowledge, es-
pecially when dealing with text, multimedia or uncer-
tain data. However, classical DLs are insufficient in
dealing with such fuzzy knowledge. Therefore, it is
necessary to add fuzzy features to description logics.

Straccia presented a fuzzy extension of typical
ALC (FALC)"™, and gave a constraint propagation
calculus for reasoning with empty TBoxes. However,
FALC offers limited expressive power for fuzzy knowl-
edge. To overcome its insufficiency, we presented a
family of extended fuzzy description logics (EFDLs),
in which cut sets of fuzzy concepts and fuzzy roles are
and atomic

considered as the atomic

34

concepts
roles”™ . Some reasoning techniques for EFDLs were
discussed in Refs. [5 —6]. This paper discusses the rea-
soning complexity for extended fuzzy description logic
with qualifying number restriction and proves that the
reasoning complexity for EFALCQ satisfiability, con-

sistency and sat-domain is PSPACE-complete.

1 EFALCQ

ALCQ is an extension of ALC with qualifying
number restriction!"!. Fuzzy extension of ALCQ is
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called EFALCQB], which introduces the cut sets of
atomic fuzzy concepts and atomic fuzzy roles as atomic
concepts and atomic roles. An EFALCQ knowledge

base Y, (T, Hg, Ag) consists of TBox Ty, RBox Hy

and ABox Aj. [ satisfies a TBox T, iff I satisfies all
cut concept axioms in T5. [ satisfies a RBox Hy, iff I
satisfies all cut role axioms in Hy. I satisfies an ABox
Ag iff I satisfies any cut assertion in Ag. [ is a model of

knowledge base Y, (Ty, Hy, Ap) iff I satisfies T, Hy
and Ag. A knowledge base z . (Tg, Hg, Ag) can sup-

port several reasoning problems. In this paper, we only
consider reasoning problems with EFALCQ ABoxes.
Since EFALCQ supports alterable cut concepts with
suffix vectors that may contain variables and functions,
we extend satisfiability into sat-domain""'.

Sat-domain For an alterable cut concept
Cifim, s 1D @ given domain n e X, =[x, x,], where
X,C€(0,1], and f,(n) is a linear function from domain
X, to (0, 1], the reasoning problem computes satisfiable
and unsatisfiable sub-domains of X,. For any n, € X,, if
Cllinp). .rucng 18 satisfiable, then n, is in the satisfiable
sub-domain; otherwise, n, is in the unsatisfiable sub-
domain.

2 Reasoning Properties for EFALCQ

Any cut concept or cut role of EFALCQ is com-
posed of a prototype and a suffix vector. The suffix
vector contains real numbers in (0, 1] and brings new
reasoning properties. We first give an obvious reason-
ing property dealing with suffix vectors of cut roles.

Theorem 1 For any two cut roles R, , and R, |
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with the same prototype, if n, <m,, then for any inter-
pretation 1, (R, ) 2(R,,,;)" holds.

The similar property holds in the case of cut con-
cepts. We introduce the definition of constraint signal
sig() of prefixes: For any atomic fuzzy concept A that
occurs in Cp, ., sig(A) =( —1)” x ( —1)?, where
D 1is the “<N” restriction depth of A in C , and if

- occurs in front of A, Q =1, otherwise Q =0; for any

[ng, ..., ng

atomic fuzzy role R that occurs in Cy, ., sig (R) =
(-DP x(=1)?, where D is the “< N restriction
depth of Rin C;, ., and if R is restricted by V, O =
1, otherwise Q =0.

Theorem 2 Let C, ., and C

cut concepts with the same prototype C, and satisfy the

(g, ] DE TWO
following condition: For any the i-th prefix (1 <i<k),
if its constraint signal is —1, then n, =m,, otherwise n,
< m,, then for any interpretation /I, the inclusion
(Crupom) 2(Cp )" holds.

Proof We use length (C,, ,) to denote the

number of suffixes in the suffix vector of the cut con-

e Mg

cept Cy,,, > and length(C,, ) =k obviously.

(D Induction base: When k =1, the cut concepts
have one of the following forms: B, and - B,

Case 1  For two cut concepts B, and B, ,
sig(B) =1, then n, <m,. For any interpretation [, d
(B,,)'=B'(d) =m,. And for B'(d) =m, =n,, then d
e (B,,)". Therefore, (B, ;)" 2(B,,;)" holds.

Case 2
7 By, sig (B) = -1, then n; =m,. For any interpreta-
) B'(d) <m=B'(d) <n,.
Then d e (= B,)". Therefore, (= B, )’ 2(= By,
holds.

) Induction hypothesis: Assume that when k<L
(L=1), the theorem holds.

(3 Induction step: When k =L + 1, the cut con-
cepts have one of the following forms: C, ., U(N)

nyl nyl*

For two cut concepts - B, and

tion /, for any de (- B

Dl"h+l~--~’"L+1J’ 3 ( V) Rl"ll' Cl”Zs--~”’L+1J and = ( S)
NRM]]. CMZ,W"LH].

Case 1 For two cut concepts Cy, ., U

[np 15 np sl and C['"1’~-4v"'/,] UD[’"h+l>~-smL+l]’ ObViOUSIy

it is true that length ( C, _,,) = h, length
(C L-h+1and h,L-h+1<L.For the
constraint signals of all prefixes in C
[ gps - npl U Dl"h+1~~~e"L+1J
are the same, two cut concepts satisfy the condition,
. and Cp,
oy
,) satisfy the condition.

[ g1s oo np 1l ) =

[ny,....,np] or

and the ones in C
conp el [ng, ...,

which implies that C,
, and D,

(respectively

[ny, .. s -een ]

[np 415 oonp 41 My g1 oo ML g |

From the induction hypothesis, for any 7, (C;, )’
2 ( D[ml,..u,m;,] )1 and ( D[nh,r],.,.,nLH] )[ 2
(D[W’h+l,A“,W’,_+]] )I' SO ( C[nl,m,nh] U D ! 2

[np s eenp o1l )

(Crn ooy YD, g )" holds from the definition
of interpretation.
Case 2 For cut concepts C, ., N
[nps1snp il and C[ml-«~~m/z] mD[thwmea,]]’ the pI‘OOf
is similar to that of case 1.
Case 3 For two cut concepts 3R, ,.C, ., |
1 2 ML 4]

and 3R, . C

all prefixes in C

since the constraint signals of

[my, ...omp 1]

Uty omp 1] and the ones in EIRW.

.., are the same, if these two cut concepts satis-

["2,---,
fy the condition, n, < m, holds, and C .,
Ciy, .. m,, satisfy the condition. From theorem 1, for

any interpretation /, we have (R[,,IJ)I 2(R,, )". From
hypothesis,  ( C,, .. ., y' 2

(Clug o) M d e (IR, Criy iy )
ists d' e A" such that (d, d') e (R;,;)" and d’' €
(Cipy...my.) - It can be deduced that (d, d') e (R, ;)"
and d'e(C,,
e (3R,,- C, .,.,)" holds. Then ( IR, .
Couponpy) 2(3R,,. C
Case 4 For two cut concepts VR
and YR, . C

case 3.

the induction

" there ex-

i) !. This means that the assertion d

1
[my, ...,mp 1] ) .
- €

the proof is similar to that of

[ng, ccoonp 41l

[my, ....omp 1]

Case 5 For cut concepts =NR,
=NMNR,,, . C
prefixes in C,
C
fy the condition, n, < m;, and C
Cin ...
any I, (R,;)" 2 (R, ) and (C,, ., )" 2
(Cinyyomy.) 0O If d e (ZNR, - Clo )
there are at least N individuals d|, d,, ..., d) such that
(d.d}) e(R,,)) and d} e(C,,, . ) 1<isN.It
can deduce that (d, d/) e (R;,,)" and d] e
(Ciy. ny.y) - Thend e (=NR,,,.C,, . ) holds,
namely, ( = NR,,,. C., .., )y 2 (= NR
C

-G
|» since the constraint signals of all

and the ones in = NR

ny ny, ..onp 41l and

my My, ., mp

[ng, coonp 41l [ny]*

are the same, if these two cut concepts satis-
[ny, ....onp 1]

[ny, ...onp 41l and

. Satisty the condition. Similar to case 3, for

[my, .. [m]*

[ny, .
[m]*

1
[my, -~me+1]) .

Case 6 Let <NR,,. C,, ,, and<DNR, .
Ciyy .my be two cut concepts, for any prefix in
Ci,y ny» its “<<N” restriction depth increases by 1 and

its constraint signal is multiplied by — 1 in <NR,, .
Cioin -
25 e

condition meaning n, = m, holds, and C,,

Therefore, these two cut concepts satisfy the

and

oyl
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C[nZA, gl
condition. The following proof is similar to that of case
5.

the pair in the reversed order, satisfies the

From (D to (3), for any two cut concepts, the theo-
rem holds.

3 Reasoning Complexity for EFALCQ

For any cut concept C, ., size (Cp, ) is
defined as the number of symbols within its prototype
C. For any cut assertion «, size («) is defined as: If «
=a: C
size (a) =1. For any ABox A, size (Ag) is defined as

(ngs > S1Z€ () =size (Cy, ., ); otherwise,
the sum of the sizes of all cut assertions in A;. We in-
troduce the ALCQ simulation method for the consisten-
cy of EFALCQ ABox A;. For any atomic fuzzy con-
cept B and role R in Ay, we define B* ={B,, | B, ap-
pears in Ag} and R™ = (R, \ R, appears in A}, we
order elements of B” and R” in an ascending order of
their suffixes n. The i-th element in B* (R") is
denoted as B, (R,;). And we define S. = {B* | B
appears in A, } and S, = {R* | R appears in A, }. By
the definition of S, and Sy, we construct an ALCQ
knowledge base 2 (T,H,A) =sim (A;) to simulate

A, where sim(Ay) is defined as
def

T={(B, ,CB,, | B eScand 1<i<|[B" [}

def

H={R, CR, |R" eSyand1<i<|R"[}

def

A=A,
In this case, By, and R, are considered as AL-

CQ atomic concept and atomic role. And obviously
sim(Ag) can be constructed in linear time of size(Ag).
Theorem 3 For any EFALCQ ABox Ag, it is

consistent iff the ALCQ knowledge base z (T,H,A)
=sim(Ag) has a model.

Proof =) Let I,(A™, -"®) be an EFALCQ mod-
el of A.. We create an ALCQ interpretation I(A’, ")
satisfying z (T, H,A) from I in the following steps:

D A" =A";

@ For any individual a that occurs in A, a =a";

(® For any atomic concept B, and atomic role

Ry, in Ag, (B[n;J)I = (B[n,-J)IE’ (R[n[J)I = (R[n,-J)IE-

Now, we prove that [ satisfies z (T,HA) .

@ For any B, , CB,, in T: for n,, > n,
(B, )" C (B, ) For (B, =(B, )", we can
induce that (B, ) C (B, )'. Therefore I satisfies T.

@ For any R, ., SRy, in H:the proof is similar
to that of case (D).

[n;,

(3 For any assertion in A: the semantics of ALCQ
concept constructors is unchanging in EFALCQ. Since
(B,))' = (B, )" (R,,)" = (R,,)" for any
C, yin A, G, =G ", And since the

R A |
semantics of individuals are also equivalent (a’ =a'®)

Ny e Ny nys e gl

and I satisfies A, and [/ satisfies A.

&) Let I(A", -") be a model of Y (T,H,A) .
We create an EFALCQ interpretation gl (A", +"&) sat-
isfying A; from [ in the following steps:

@D A" =A";

@ For any individual a that occurs in Ag, a'® =
a;

® For any atomic fuzzy concept B and role R in
Ay, for any d, d’ € A", B"(d) =max{{n, |de(B,,))"}
U{0}}, R™(d, d) = max{{n, | (d,d") e (R,)'}U
{0}}.

Now, we prove [, satisfies Ap.

Obviously, (B, )" ={d | B*(d) =n,} ={d | 3],
de(B[nj])’ and j=i} = U,Bi(B[,lj])’. And for any i,
(B,
(B[nj])IQ(B[nl_])’ holds. As a consequence, (B, )" =
(B,,))'. And (R,;)"™ = (R,,,)" is similarly proved.

Since the semantics of ALCQ concept constructors are

' C(B,,)" holds, obviously for any j = i,

unchanging in EFALCQ, for any concept C,, in
AE’ (C[nl,.u,nk] )IE = (C[

tics of individuals are also equivalent and I satisfies A,

s ngd
w.mg)'- And since the seman-
I satisfies Ay.

This theorem guarantees that consistency of
EFALCQ ABox A; can be converted into consistency
of a semantically equivalent ALCQ knowledge base
sim(Ag) in linear time of size(Ayg).

Then, we can reduce satisfiability into consistency

easily.

Theorem 4 For any EFALCQ cut concept
C,,. .1t is satisfiable iff the EFALCQ ABox A; =
{x:C},, ..} 1s consistent.

Guaranteed by the above theorem, satisfiability of

cut concept C;, ., can be equivalently rewritten into

......

consistency of Ag = {x: C;, ., }. And such rewriting
can be finished in linear time of size(C, ).

Finally, we use satisfiability to discretely simulate
sat-domain. For any alterable cut concept Cy/,,) o

neX, =[xy, x,], the discrete simulation is based on the
idea of equivalence partitioning of the given domain

X,. There are at most k functions in C, ’s suf-

[f1(n) s -os film)

3

]
fix vector. We define the equivalence relation “="": For

any two points n,, n, € X,, n, =n, iff for any two func-
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tions f;(n) and f;(n), 1 <i <j<k, f,(n)#f;(n) <
filn)#f,(n,), where # e { <, >, =}. By using the
equivalence relation “=", we partition X, into some
equivalence sub-domains.

Now we will prove the upper bound of the num-
ber of the equivalence sub-domains. For any two dif-
ferent linear functions f;(n) and f;(n), they have at
most one point of intersection in X,. Therefore, there
are no more than k(k —1)/2 points of intersection for
all k functions. The points of intersection of two equiv-
alent functions f;() and f;() are ignored here, because
they have no effect on the equivalence partitioning.
For any x € X, f;(x) =f;(x) holds. We denote the set
of points of intersection as P*. Let P* be in the in-
creasing order of the value of the points and N =
P
equivalence sub-domain, and the intervals (p;, p,,,)

.Now we prove that any p, € P*, {p,} is an

1<i<N, [x,,p,) and (py, x,] are equivalence sub-do-
mains.

(D For any p, e P*, p, must be the point of inter-
section of two different functions f,(n) and f,(n).
Since f,(n) and f,(n) have at most one point of inter-
section, no another point y satisfies f,(y) =f,(y). That
means no another point y satisfies x = y. Therefore,
{p;} is an equivalence sub-domain.

@) For any n, <p, < n, let p; be the point of inter-
section of two different functions f, (n) and f,(n).
Since f(n) =f,(n) —f,(n) is also a linear function and f
(p) =0, f(n,) f(n,) <0 holds. That means f, (n,) >
() fi(n)=f(n) <(>)f(n,).n, and n, are in two
equivalence sub-domains.

@) For any n,, n,in (p;, p;,,),f.(n) and f,(n) are
two different functions, let f(n) =f, (n) - f,(n).
Since f(n) is also a linear function and there is no
point z in (p,. p;.,) satisfying f(z) =0, then f(n,)f(n,)
>0. That means f,(n, ) #/,(n,) iff f,(n,)#,(n,). There-
fore, n, =n, holds. And from @, (p;, p;,,) is an
equivalence sub-domain.

@ For any x, y in [x,,p,) or (py,x,],n,=n, ob-
tains a similar result from the proof in (3). And from
@), [x5,p,) or (py»x,] is an equivalence sub-domain.

Since |P*[<k(k - 1)/2 and the number of
equivalence sub-domains is no more than 2 |P* | +1,
then the upper bound of the number of equivalence
sub-domains is k(k —1) + 1. After equivalence partitio-
ning, we will prove that “=" can cause the equivalent
results of satisfiability.

Theorem 5 For any n,,n, X, and n, =n,, the
cut concept  Cp, ny 1S satisfiable iff

C is satisfiable.

i), e filmy)]

Proof =) Let I(A', -") satisfy Cp.(,) o))
We create an interpretation I (A, -'#) satisfying
Cy, (1)) oo fin)] from I in the following steps:

@ A" =A";

(@ For any atomic fuzzy concept B and atomic
fuzzy role R that appear in C, for any d,d' e A™,

B"(d) =max{{f,(n,) |de (B ) }U{0}}
R™(d,d") =max{{f,(n,) | (d,d") e (R, }U{0}}

Now, we prove [, satisfies Cj;(,, L

From the definition of B and R'®, we can obtain

(B ® = {d | BE(d) =fi(n)) ) =

{d] 3f,de(By,,)" and f(n,) =f(n,)}

For n.=n, f,(n,)) =f(n)<f(n) =f(n,),

(an\n)lr ={d| df.de (Blf‘,(m)l and f,(n,) =fi(n,)} =
U np =finp (B im0 ) =(B Uitnp1) '

Similarly for any R[f,»(n,»] in C
(R )E = ( Risinn ). From the
(Clritng. oomtitnon) = Ciriny. Sl )" # (. Therefore,
I satisfies Cmm),'--,mnvn' 7

[fi(ny), ..o filny) 12
definition,

<) The proof is the same as =).

From theorem 5, we can obtain that any equiva-
lence sub-domain is completely belonging to an either
satisfiable or unsatisfiable sub-domain. Therefore, we
can check satis-fiability of the alterable cut concept at
a single point instead of in the whole equivalence sub-
domain. Since the number of equivalence sub-domains
is no more than k(k — 1) + 1, the sat-domain of

Clricm. ot
1) +1 satisfiability of Cy; ) ;(.,y» Where n, is in X;.

in X, can be converted into at most k(k —

From the above three theorems, we have proved
that the three EFALCQ reasoning problems can be
polynomially converted into consistency of ALCQ.
Since consistency of ALCQ is PSPACE-complete!”,
we have the following theorem.

Theorem 6 The reasoning complexity for
EFALCQ satisfiability, consistency and sat-domain is

PSPACE-complete.
4 Conclusion

The reasoning complexity for EFALCQ is dis-
cussed. To solve the EFALCQ reasoning problems,
EFALCQ is discretely simulated by ALCQ, and ALCQ
reasoning results are reused to prove the complexity of
EFALCQ reasoning problems. It is proved that the rea-
soning complexity for EFALCQ satisfiability, consis-
tency and sat-domain is PSPACE-complete. This work
can be considered as a new idea of extending DLs with
fuzzy features. Further work will focus on reasoning
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techniques for the fuzzy extension of more expressive

DLs with more concept and role constructors.
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