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Abstract: An energy-efficient heuristic mechanism is presented to obtain the optimal solution for the coverage

problem in sensor networks. The mechanism can ensure that all targets are fully covered corresponding to their

levels of importance at minimum cost, and the ant colony optimization algorithm ( ACO) is adopted to achieve

the above metrics. Based on the novel design of heuristic factors, artificial ants can adaptively detect the energy

status and coverage ability of sensor networks via local information. By introducing the evaluation function to

global pheromone updating rule, the pheromone trail on the best solution is greatly enhanced, so that the

convergence process of the algorithm is speed up. Finally, the optimal solution with a higher coverage-

efficiency and a longer lifetime is obtained.
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The coverage problem is a fundamental mecha-
nism in sensor networks, which represents the quality
of service (QoS) provided by sensor networks. A typi-
cal coverage problem can be modeled as a set covering
problem (SCP), which is an NP-hard combinatorial op-
timization problem. Most previous work on coverage
problems has focused on the energy efficient algorithm
design to prolong the lifetime of sensor networks and
meet various coverage requirements. In Ref. [ 1], the
coverage problem was modeled as finding the maximal
number of disjoint set covers with each set completely
covering all targets. Ref. [2] presented a randomized
and coordinated sleep algorithm which can maintain
network coverage by using low duty-cycles and each
sensor independently sleeping under a certain probabili-
ty. In Ref. [3], the authors proposed an energy conser-
ving protocol to extending the lifetime of sensor net-
works by maintaining only a set of sensors in working
mode and ensuring coverage and connectivity with
high probability. In Refs. [4 — 5], the authors addressed
a k-coverage maintenance algorithm. Each target in a
given region can be covered by at least k distinct sen-
sors and each sensor decides whether it is in redundant
status by checking the state of its sensing perimeter.
The ant colony optimization ( ACO) is a constructive
meta-heuristic optimization method, which can be seen
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as probabilistic construction heuristics that generate so-
lutions iteratively by considering the accumulated past
search experience and the heuristic information on the

instance under solution'®

. ACO performs excellently in
solving most combinatorial optimization problems and
it has been successfully applied to TSP, QAP, VRP,
etc. "™ It is also a positive feedback search algo-
rithm'”' | the optimal solution will accumulate a larger
amount of pheromone and in turn will be selected more

often in the future.
1 Model Description

1.1 Network model

Given randomly and densely deployed a set of ¢
sensors, N = {n,, ..., n;, ..., nw} on the sensor area.
Each sensor n; e N with a known location obtained by
GPS has sensing range £, and communication radius &,
(£ =2¢0). The set of neighbors of n, is denoted as
0" . LetR={r,....r;,...,r,} be a set of static targets
in the monitor field. We define the threshold vector
Dtresn = {rihlr)csh’ e rflil)'csh’ e rfl?r)csh }1><0(r§}2'csh e[0,1])
to denote the different levels of importance of all tar-
gets in R. Each element of ., is the predefined crit-
ical coverage probability of a corresponding target,
which reflects the requirement of coverage accuracy to
the above target and that the value of each element in
D 18 proportional to the level of importance of the
corresponding target. Then we define the norm of vec-
tor ¥y, as Eq. (1), which can evaluate the average
coverage accuracy of the monitor field.
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1.2 Cache and information packet model of sensor

It is assumed that each sensor n, e N maintains a
cache,, which comprises tab{**", tab{"™® and tab™”. At
the initial stage of the algorithm, n; receives a packet,;
from O'” and stores it into cache;, whose structure is

cover

shown as follows: tab;"" = {..., o,, ...}, where o, de-
notes the coverage-vector of senor n, € 0'”; tab!™ =
{....P,, ...}, where P, denotes the probability-cover-

age-vector of n, e 0" tab{™™® ={...,

i

denotes the normalized remaining energy level of n, e

e, ...}, where e,

0" . The n,’s packet, is shown as

ID, Location, e, P, o,

i i i

where ID, is the identity of n,, Location, is n,” s loca-
tion information obtained by GPS, e, is the normalized
remaining energy level of n;, P, is n;” s probability vec-
tor, and ¢, is n,” s coverage vector.
1.3 Memory model of ant

Each ant,, k =1,2, ..., m, has a memory M that is
used to store the information about the sensors visited,
i.e. L'"”, and the targets covered, i. e. 0" . The struc-
ture of ant,’ s memory is shown as

ID(k) L(k) @( k)

where ID" represents distinguishing the ant, from the
data packet. L'” is a tabu list, which records the solu-
tion built by ant,, and is shown as
LY = {n,x®, . nXP, .0 X

1 neL?”
{0 n, ¢ LY
50" },,, is defined as solution vector corresponding to
LY, s =xY. @™ is shown as @ = {0\, ..., 0",
.. O}, ., and the i-th element of @" denotes the
times that target r, has been covered by L. Then, the

k k k k
where X\ = s = {5 o

e 8

Boolean vector @', is defined as

norm

Ol =12(0"), ... 2(0"), ... 8(O) )}, (2)
where g(x) is a sign function,

(%) 1 x=0

X) =

& {o x <0

(@Y = {1 if 7, has been covered by LY, r, e R
l 0  otherwise

With the element sequence, @ and vector 1],
={1,1,...,1},,, are processed bit by bit with the ex-
clusive-OR or operation. Then the Boolean vector

mis the result, which denotes those targets uncov-

ered by the current partial solution L. The current
feasible neighborhood of ant, at n;(i =1,2, ..., ¢) is

defined as A, =L™ N0, where L™ =N -L™" .
1.4 IP model of optimization coverage mechanism

The goal of the optimization coverage mechanism
(OCM) is to find a subset in sensor field N with a
minimal evaluation function value; meanwhile, the
whole monitor field R is completely covered by the
subset and each target in R can be covered according to
corresponding coverage accuracy. The integer program-
ming (IP) formulation of the OCM is given as

min f(s"*))

0 ¢
.Y Yy siV=0 oy oeo, s es”
i=1 iz

(3)
where f( -) is the evaluation function (defined in Eq.
(9));s'* is the optimal solution vector obtained by
the algorithm and s; ™’ is the element of s**’;y{" is the
element of coverage vector ¢ (defined in Eq. (7)); 6 is

the number of targets in R.
2 Design of Algorithm

In this paper, artificial ants adopt stochastic solu-
tion construction procedures that probabilistically build
a solution by iteratively adding sensors to partial solu-
tions while considering heuristic information and pher-
omone trails.

2.1 Design of heuristic factor

First, we design the objective function, which is
based on the idea that the unit cost of covering an ad-
ditional target is minimal. So, the structure of the ob-
jective function is constructed as

Cy
Ti=y,
where v is the coverage factor, which is the number of
additional targets covered when adding sensor 7, to L”
when ant, at n;; ¢; is the cost factor, which is the cost
of selecting n; as the next hop node when ant, at n,.
Then, we design the structure of heuristic factor 7,
based on the inverse of the objective function.
mi=y (4)

So, with the heuristic desirability, the artificial ant
tends to choose a neighbor sensor, which covers the
maximal number of uncovered targets and has a higher
remaining-energy-level (i.e., less cost) as its next hop
sensor.

2.1.1 Design of cost factor c;
For each sensor n; € N, we define the remaining-
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energy-factor as
El(_leﬂ
€ = El(_ini)
where E” is the remaining energy of n,, and E'™ is

the initial energy in n,. Then, we construct the structure
of the cost factor as

c -1
[:/'_~
on

where w; = ¢/ z e(n,n; o) .
n/c0d

2.1.2 Design of coverage factor v

We assume that each n; e N probabilistically cov-
ers r; € R. The probability p;” reflects how well the r,
is monitored by n,, not considering the influence by
n,;” s neighbors, which also denotes the sensing ability
decreasing with the increase of the distance.

1 , ,
— 4" <¢
[1+09,d"1" ;=e (5)

(i) i
0 d" > &
where & is the sensing radius of sensor 7,; dj(.i) is the

Euclidean distance between n; and r;; 9, and 9, are pa-
(10]

() _
p] -

rameters reflecting the physical features of a sensor
We define zj(-i) as
2" =1-11-p" 1 [T 1-p"1 (6
n,eO(')

It is the probability of sensor n, to cover target r;, tak-
ing the influence by n,” s neighbors into consideration.

{ Z(l) Z(t)
1 9 *e9s .y
2"}, ., according to Eq. (6), based on the information

Each n, can calculate the vector zZY =

from tab?®. If z\” =7\, then r; can be covered by n,
with corresponding coverage accuracy, otherwise not.

So the coverage vector of n, is defined as
(0 9 () 0
{g(z ~ Tthwesh ) » ,g(Z T Tthresh ) 5 =+ s
(i _ L0
g(Z thre@h) }1><9 (7)

; 1 r; covered by n,
g( _;) EIJn)'cih) = { ’

Then, the coverage matrix B,,,

otherwise
is shown as

B, ,6 =|0

ox0
“Heoxo

where the j-th row of matrix B, , is n;” s coverage vec-
tor, i. e. o,(n; e O(i)). When ant, reaches n,, it takes
the status information of each n, € 0" in n;” s cache
and the stored information in memory M". Then it does
the following operation of matrix cross products and
obtains the vector A, which denotes the coverage infor-

mation of sensors in O,

[07.1,., xB]

norm

0]
where A, , ={...,q;", ...}IW,

= Al xX¢ ( 8)
" represents the num-

szp

ber of the targets that are not covered by L', but cov-
ered by n,. If ai” =max{...,a,", ...} (n,n,e0"),
then n; can be chosen by ant, as the next hop. So we
define the coverage factor as v; =a](-”/ 0.
2.2 Design of evaluation function of energy effi-
ciency to solution

Function f is designed to evaluate the quality of
the solution based on the energy-efficiency. We define
£,(s) as the function to evaluate the average-remai-
ning-energy-level of solution L” and f, (s') as the
function to evaluate the energy-balance-level to the
same solution. The value of f,(s'”) is in direct propor-
tion to the average-remaining-energy-level and the val-
ue of f,(s"") is in inverse proportion to the energy-bal-
ance-level.

©
A6 = Fest | s
Z (k) (k) - (k) ?
(e =T/ 35
n,eL¥(1) i=1

(k
JACR I -
(k) (k)
Zeisi/ SI.
i=1 i=1
El(llef)
e; :El(.ini)
e, el0,1], s* es™, ke[l,m], iell,q]

The relation between the range of evaluation function
value and its corresponding level of energy-efficiency
is shown in Tab. 1.

Tab.1 Value of evaluation function and corresponding level

Remaining-energy- Energy-balance-

A level of s¥ G level of s¥
0 Low 0 High
0,1) Middle 0,1) Middle
1 High 1 Low

The evaluation function of energy efficiency to the
solution is designed based on f, and f,.

JGs) =11 =8)£,(s7) +8(1 -£(s“ N1 (9)
where § is the scaling factor (0<<§<1) and the value
of f(s") is inversely proportional to the quality of so-

k . .. .
' When § = 1, the evaluation criterion is

lution s
based on the energy-balance-level of the solution.
When & =0, the evaluation criterion is based on the av-
erage-remaining-energy-level of the solution. When &
e (0, 1), the evaluation criterion is based on the trade
off between the above two criteria.
2.3 Global pheromone updating rule

After each ant,(k=1,2, ...,
construction of a solution, we consider the 2-tuple set
(S, /), where S is the set of candidate solutions built by
ants and f is the evaluation function, stated in Eq. (9),

m) has completed the

which assigns to each candidate solution vector s e §
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and measures the quality of it. § = {s", ..., s, ...,
(m y *

s , where s'® = {sﬁk), e S5, sfp") H ‘o is the solu-

tion vector corresponding to LY. And f, =f(s"”) is the

)

evaluation function value of s¥. Sort all these values

S

(w=1,2,...,m, — 1, m, <m). The superscript of f, is

in an ascending order into set f = {**, ..., f}, ..

the rank of ant, and we adopt the extension elitist strat-
egy''"! to sort the ranks of ants according to the quality
of solutions. £ is the minimal value in set f. So s'* is
the iteration-best solution vector constructed by the it-
eration-best ant,. The other ant with rank w is the w-th
best ant. Only the iteration-best ant and (m, — 1) best
ants are allowed to deposit pheromones and the intensi-
ty of pheromone is based on their ranks. The w-th best
ant contributes to the pheromone update with a weight
given by max {0, m, — w}, while ant, reinforces the
pheromone trails with weight m,_. So, at each iteration,
the pheromones are enhanced at the sensors belonging
to the iteration-best solution. The global pheromone
updating is applied by the following rule:
r(t+1) =1 -p)r (1) +

mo—1

Y (m, —w) A7} (1) +m AT (1)

w=1

where
Q/f"  ifn,eL"
ATE(1) = : ©
0 ifn,gL"
_ o/fy if n,e L' k+#e
Ari(n={" """ "
0 if n,¢ L

where Q is the positive constant; p is the pheromone
decay rate.

Based on the updating rule, the global pheromone
deposited is a function of the solution quality and will
guide the search of the remaining ants in the future.
2.4 Implementation of the algorithm

At the initial stage of the algorithm, Sink broad-
casts information frame,(i =1,2, ..., ¢) (shown as fol-
lows) to each sensor n; e V.

ID. Instruction, D, Ditresn

i

where ID, is the identity of sensor n, and Instruction, is
the instruction of constructing an artificial ant. If In-
struction; =1, an artificial ant in n, will be created, oth-
erwise not. D, is the distance-vector, D, = {d", ..., d}",
oo dy’ } o d;” is the Buclidean distance between n,
and r;. Oy, 18 the threshold vector.

When receiving the frame;, n; compares the ID in
the information frame with its own ID,. If they are
matched, n; accepts it and calculates P; according to

Eq. (5). Then, n, broadcasts packet; to O'”. After that,

each sensor calculates its coverage vector according to
Eq. (7) and broadcasts the updated information packet
to sensors within its neighborhood. The initial stage of
the algorithm is over when each sensor has kept the in-
formation from its neighbors. Then, each ant starts with
an initial state to construct a solution. It is assumed
that ant, (k =1, 2, ..., m) which launched from n, be-
gins to build its own solution L'’ . First, ant, respec-
tively adds n, into L' and ¢, into @ and obtains the
initial values of them. When ant, reaches n,, it adds n,
-4 U
{n,}, sets X to 1 and takes @" from its memory M",
and makes it do a vector addition operation with g; to

to its current partial solution L; i.e., L

new

get the targets set covered by the current partial solu-
tion L' (O, = @), + o). After that, ant, calculates
the value of heuristic factor 7, according to Eq. (4),
and selects the next unvisited sensor in A, with pfj
= 1/ Z %05 "', This process is repeated until the

reAy

termination condition
6

>0, =0 (10)

i=1

is satisfied, which means that all targets are fully cov-
ered. Then, the construction procedures of ant, stops.
The algorithm is terminated when no improved solution
is found for a given number of iterations. And the algo-
rithm returns the best solution found; i.e., L%,
which can meet the coverage requirements, mean-
while, has good energy efficiency. Then let the other
redundant sensors in N — L'*’ be turned into sleeping
mode.

3 Simulation Results

The following simulations evaluate the perform-
ance of the OCM. And the parameters in the ACO are
set as follows: « =0.7,8=2.3,p=0.2,m =25, Q =
1000. Firstly, we define the coverage ratio as Eq.
(11), which denotes the coverage ability of sensor net-
works.

0 @fh)
o = 2 g (1)

i=1

where @!*' € @'’ denotes the times of target r, cov-
ered by L'* and 6 is the number of total targets.
When the coverage ratio reaches the stable value, it
means the whole monitor field is completely covered
by the solution. So, the coverage lifetime is defined as
the period of keeping a stable coverage ratio and the
solution with a long coverage lifetime is of high quali-
ty. We adjust the level of each target by setting the cor-

responding element value in ., and evaluate the av-

hres|



Energy-efficient mechanism based on ACO for the coverage problem in sensor networks 259

erage coverage accuracy of the monitor field according
to the value [y, ;-

In Fig. 1, according to different average coverage
accuracies, the variety in coverage ratio associated
with the process of solution construction is analyzed.
Given || I, > [P
with about 0. 1% more than |9,
erage ratio at stable status will decrease with about

., when |90, [, increases

\» the former cov-

10% less than the latter one, and the number of itera-
tions with ||, [, is about 47% more than the one
with [| 9.,
ments of the average coverage accuracy to the monitor

,» which denotes that when the require-

field is improved, the coverage ratio at stable status de-
creases accordingly, and it takes a longer time to reach
stable coverage status. From Fig. 2, based on the two e-
valuation criteria of solution quality, i. e. f; and f,, we
make the comparison between the performance of the
algorithm according to the number of rounds versus the
normalized coverage ratio. In the simulation, we can
know that with the increase of rounds, when 6 =0, be-
cause of the balanced energy distribution, the composed
sensors in solution run out of energy and die at almost
the same time. When § =1, the composed sensors in the
solution run out of energy at different times. Because
of the unbalanced energy consumption and because of
the high remaining energy level of the solution, some

1.0

200000600
200

P

/o"”

P

[=]
o]
T

(=]
[=))
T

P

@y
/ —s— Norm of threshold vector 1

—o— Nom of threshold vector 2
/P

0 L I I L
0 200 400 800

Iterations
Fig.1 Normalized coverage ratio vs. iterations

Normalized coverage ratio
o o
(S L
T T

L |
1000 1200

(=]
=)}

Normalized coverage ratio
e
~

a8

1 1 1 Ll ]
0 200 400 600 800 100012001 400
Rounds

Normalized coverage ratio vs. rounds with two

0

Fig. 2
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composed nodes have a longer lifetime. And we can
see that the coverage lifetime with § =0 is longer than
the one with § =1, so the solution of § =0 is of rela-
tively high quality. In Fig. 3, we analyze the changing
of the coverage ratio with different node densities ac-
cording to different threshold vectors ([0, [, >
[ 1,). We can see that the coverage ratio in both
cases ascend and get close to the same coverage ratio
with the increase of node density, which denotes that
the coverage ratio with different average coverage ac-
curacies tends to the same value in a high node density
area.
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4 Conclusion

An optimal mechanism with the characteristics of
energy-efficiency and coverage-efficiency is presented
for coverage problems in sensor networks. The mecha-
nism based on ACO can guarantee that all targets are
completely covered; meanwhile, the accuracy degree of
coverage to each target is proportional to its level of
importance. So the important targets are more reliably
covered, on the premise that each target is covered by
at least one active sensor. By introducing the coverage
factor and the cost factor to the construction of the
heuristic factor, as well as an evaluation function to the
global pheromone updating rule, the artificial ants are
equipped with the ability to be aware of the coverage-
status of the monitor field and the energy-status of the
sensor area. By iteration methods, the solutions’ con-
struction procedures are based on the energy status and
the coverage ability of sensors by local information.
The pheromone trails on the optimal solution are also
greatly reinforced. Finally, the optimal solution with
energy-efficiency and coverage-efficiency is obtained
in polynomial time and the robustness of the solution is
greatly improved.
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