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Subspaces for weak mild solutions
of the second order abstract differential equation
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Abstract: The topic on the subspaces for the polynomially or exponentially bounded weak mild solutions of the
2

following abstract Cauchy problem %M( t,x) =Au(t,x); u(0,x) =x, %M(O, x) =0, x € X is studied, where A is

a closed operator on Banach space X. The case that the problem is ill-posed is treated, and two subspaces Y(A,
k) and H(A, w) are introduced. Y(A, k) is the set of all x in X for which the second order abstract differential

d .
a<v(t,x),x >

equation has a weak mild solution v(z, x) such that ess sup {(1 +1)7F 11=0,x" e X",
lx* <1 } < + 0. H(A, w) is the set of all x in X for which the second order abstract differential equation has

1=0,x" eX’,

d .
SO0,

following conclusions are proved that Y (A, k) and H(A, w) are Banach spaces, and both are continuously
embedded in X; the restriction operator A \

a weak mild solution v(¢,x) such that ess sup { e x* <1 } < + . The

v p generates a once-integrated cosine operator family {C(7)},.,

— 1 .
such that hmfﬂ C(t+h) —-C(1) HY(A o <M(1 + 1, Yt=0; the restriction operator A | Hoae) ZEDErates a once-
h—0" ’ ’

<Me”, Vt=0.

HA w)

integrated cosine operator family {C(?) },_, such that h;n%H Ct+h) -C ||
h—0"
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1 Basic Concepts

Let X be a Banach space and A a closed linear op-
erator on X. Many physical problems may be modeled
as a first order abstract Cauchy problem

%u(r, x) =Au(t, x) ()
u(0,x) =x

The first order abstract Cauchy problem is well-
posed if A is densely defined and generates a strongly
continuous semigroup. When A is densely defined, but
it does not generate a strongly continuous semigroup,
then (1) is ill-posed' ™.

Examples are the backwards heat equation, the
Schrodinger equation on L”, p#2, etc”™.

To deal with the ill-posed abstract Cauchy prob-
lem, Davies and Pang"’ introduced the concept of ex-
ponentially bounded C-semigroups; Arendt'® introduced
the concept of integrated semigroups. de Laubenfels et
al. " introduced two subspaces Z(A, k) and Y(A, k).
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Z(A, k) is the set of all x in X for which (1) has a mild
solution such that (1 +7) *u(t,x) is uniformly contin-
uous and bounded on [0, o ); Y(A, k) is the set of all x
in X for which (1) has a weak mild solution such that

ess sup{(l +1) F \%(v(t,x),xw B

t=0,x" X", [|x* IIsl} <+

Also in Ref. [3] the restriction operator A | ZAD
generates a strongly continuous semigroup, and
Al vk generates a once-integrated semigroup.

Motivated by de Laubenfels et al. !"', author intro-
duced the subspace W(A, k), that is the set of all x in X
for which the second order abstract differential equa-
tion has a mild solution u(z, x) such that (1 +7) *u(t,
x) is uniformly continuous and bounded on [0, = ).
We will consider the following second order abstract
Cauchy problem

((1172214( t,x) =Au(t, x)
(2)

u(0, x) =x,%u(0,x) =0 xeX

where A is a closed linear operator on a Banach space
X.

In this paper, we introduce the subspace Y(A, k)
that is the set of all x in X for which (2) has a weak
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mild solution v(¢, x) such that
G d 0.
ess sup{(l +1) " dt(v(t,x),x R

1=0,x" X", [|x* IIsl} < + oo

Also note that the restriction operator A | YAD
generates a once-integrated cosine operator family
(C(1) )0

Throughout this paper, B(X) stands for the Ba-
nach algebra of all bonded linear operators on X, A for
a closed linear operator on X, p(A) for the resolvent set
of A, D(A) and Im(A) for the domain and image of A,
respectively. R™ =[0, ).

Definition 1 A weak mild solution of (2) has a
form

t
v(t, x) :Af (t —s)v(s)xds + 1x (3)
0
so that +—v(¢, x) is locally Lipschitz continuous, and
f (t —s)v(s)ds e D(A) , for all £=0.
0

Definition 2 Let W be a subspace of X. We
write A \ w for the restriction operator of A in W; that is,
D(A],) ={x e WND(A):Ax € W} and A|,x =Ax
for YxeD(A|,).

Definition 3 The strongly continuous family of
operators {C(?) }: R*—B(X) is called a once-integrat-
ed cosine operator family, if

@ C€(0) =0;

@) For every x e X, we have

2C(s)C(Hx = fﬁ[C(r)xdr —f ] C(r)xdr

0<s,t< +o
Definition 4 Let ke NU {0}, Y(A, k) be the set
of all x € X for which (2) has a weak mild solution
v(+,x) so that

ess sup{(l +1 7t \%{v(t,x),x*> | :

t=0,x" eX”, |x* ||$1} < 4o

Define

4 d .
— e d .
[xlya = eSS sup{(l +1) \dt<v(t,x),x )

s

(e, x*) |:t=0,x e X, x" e X", |

x*||$1}

Definition 5 Let w >0, H(A, w) be the set of all
x e X for which (2) has a weak mild solution v( -, x)
so that

o d N
ess sup{e \dt<V(t,x),x E

=0,x"  eX”, ||x* $1} < 4+

Define

>

—wt d *
[xl ., =ess Sup{e \E<V(t,x),x )

[ (x*) [it=0,xe X,x" e X", Hx*|\$1}

Definition 6 Suppose V is a Banach space. We
say that {g(s)},., CV is the once-integrated Laplace
transform of G, if G: [0, o )—V is continuous, G(0) =
0 and

o(5) =sj e G(ndt s >0

0
2 Main Results
Theorem 1 The following are true:
(D Y(A, k) is a Banach space, and is continuously
embedded in X;
@Al vk generates a once-integrated cosine op-
erator family {C(t)},_g., such that

1§ni\|C(t+h) = C(D) lypy <M(1 +1)" V=0
-0+ h :

where M >0 is a constant.

Theorem 2 The following are true:

(D H(A, w) is a Banach space, and is continuously
embedded in X;

@Al HAw) ZENErates a once-integrated cosine op-

erator family {C(?) },_g., such that
im | C(r k) = C(1) lyp, <Me” Y120
w0+ h ’

where M >0 is a constant.

To prove theorem 1 we need the following lem-
mas:

Lemma 1 Suppose t ->W(r) e C([0, =), X)
and is O(e™) (t—07"), 5’1 — A: X—X is injective, then
the following are equivalent:

@D (ST - A) 'x :j e W(nxdt, s > a;
0
@ For auz;o,f (t =) W(r)xdr e D(A) , with
0
W(t)x :AJ (t =Y W(P)xdr +1x .
0

Proof (O = . From (s°I
f e "W(1)xdt , we have
0

- A'x =

ssze_“"W(t)xdt =Afxe'”W(t)xdt +x =
0 0
sAf0 e"”U;W(s)xds]dt +x =

szAf:e‘”U'(z _S)W(s)xds]dr +x
Then
[ e winadr = foe Af (1 =9 W(s)ads]dr +
0

0

©

si2 - fo e_n[AJr(Z —5) W(s) xds +tx]dt
0

By the uniqueness of the Laplace transform, we have

for 1=0, f (t —s)W(s)xds e D(A) , and
0
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Aft(t —)W(s)xds +1x = W(Hx  Yxe X
0

@=(D. From W(f)x =Af (1 —s) W(s)xds +1x,
0
we have

f:e’s’W(t)xdt - Af:e’”[f;(t — 5) W(s)xds]dr +

AJ“
SJo

= Azf e W(t)xdt +i2
S 0 S

f : re ™ xds e[ f ;W( 5)xds]dt +

2
N

Thus (s°1 — A) f e W(r)dr = x . This implies that
0

(s —A) 'x :f e ™ W(1)xdt
0

As in the proof of Ref. [8], we have the following
lemma:

Lemma 2 The following are equivalent, if k
N,

(D There exists a constant M, so that A generates
a once-integrated cosine operator family {C (?)},.,

such that li;n%HC(Hh) —C(H) l<sM(1 + )", for all
h—0 +

t=0.
() There exists a constant M, so that (0, «) C
p(A), and for ne N

’ AN =A) ]| <

(n +k)!]

)\n+k+l

M [ /\n+l
Proof of Theorem 1

1) From the definition of | x HY( 4.k » WE have

= ess sup{(l +0)7* \

lxllysy =

x" e X', |Ix®

} > x|

(4)
Thus Y(A, k) continuously embedded in X. To see that
Y(A, k) is a Banach space, suppose {x,} is a Cauchy
sequence in Y(A, k). Then (4) implies that {x,} is a
Cauchy sequence in X. There exists x € X such that x,
—x in X as n—o . Since

&)

then there exists Lipschitz continuous W(1#): [0, ) —
X, such that {(1 +7) *v(t,x,)} converge to (1 +1¢) "
W(t) in the Lipschitz norm as n—o . We set n—c0 in
(5), then

W(1) =Ajt(t — ) W(s)ds + 1x

Thus x € Y(A, k) with W(7) =v(t, x). This implies that
Y(A, k) is a Banach space.
2) For all >0, Vxe Y(A, k), we have

(AT —A)j e Mv(f)xdr = )ﬁj e Mv(r)xdr —
0 0

v(t, x,) =AJ (t —s)v(s,x,)ds +1x,
0

m—/\[ _Zm—)\t _200—/\
Ajoe V(1) xdr _Ajoe (1) xde Ajoe

[Aft(t —$)v(s)xds]dt = Azj:e‘“v(t)xdr -
Azjme*“[v(r)x —x]dr = x
0
Thus Y(A, k) CIm(A* 1 -A) =D((A*I-A) ).

To show that (A’ —A) ~' maps Y(A, k) into it-
self, for a fixed x e Y(A, k), we must construct a map
r-W(r, (AT-A) 'x)

2
such that %W( t, x) is locally Lipschitz continuous and

satisfies
d2
d 2
d2
Let EW( t,x) =v(t,x), then v(¢, x) satisfies

—W(t,x) =A(W(t,x)) +tx t=0

v(t,x):Af(t—r)v(r)xdrﬂx t=0
0
Denote
” —At 1
u(r) =f e {Z—A[W(Hr,x) —W(t -—r,x)] -
0
r d?
:?W(t X)}
then
u'(r) =fme’“2%\[ —W(t +r,x) - d—W(r rx)]dt
0
2
Au(r) _fo '“21)\ [ng(t +r,x) —(t +r)x —
d2
W =)+ —r)x]dz -

r * —At d2
—A| e —=W(t,x)dt
A f 0 dr (2%

L dr +
A

W) —Au(r) = [ Ten

A—’Z(A “ XL+ XDNT —A)'x = /(AT —-A)'x

This proves that (A’ —A) ~' maps Y(A, k) into itself,
with W(r, (A’ -A) ~'x) =u(r), for x e Y(A, k).
This implies that, for all A >0, (A’ -A | ,,,) isa
bijection.
From lemma 1, we have
2 -1 —At
(AT —A\Y(A’k)) X —fo e 'v(1)xdr

Let xe Y(A, k), x" e X", then
</\()\21 -A ‘ Y(A,k))ilxyx*> =

/\f:e'“<v(t)x,x* ydr = j:e

Differentiating the above equality » times in A, we obtain

A >0

—At i *
dt(v(t)x,x ydt

(=1 [ e S ar
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By the definition of HxHY( 40+ We have

d *
\a<v(t)x,x I M A +1) |«

YA B)
Then
| <
[ n! +(n +k)!] x|
2 n+l n+k+1 Y(A k)
A A
Thus
d -1
‘ d Y(A,k)) x] =
Y(A, k)

n! (n +k)!
2[/\”+1 An+k+] ] ”xHy(A,k)

For x e Y(A, k), let C(t)x =v(t, x), then by lemma
2, Al yap generates a once-integrated cosine operator
family {C( t) }1=0 such that

hm*HC(t +h) = C(1) |y <M +0)

forall 1 =0
The proof of theorem 2 is similar to that of theorem
1, the details are omitted.
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MRS ARERRESEE T E
FAFHE

(T FREAIF R, @R 210029)

2. i438 Banach =) X L —Mdb 2457 7?;.

u(t x) =Au(t,x); u(0,x) =x, tu(O,x) =0,xeX®

RiEZHEL,XEARX LR ETF ;51850 Y(A,k>,f~'wzﬁ: Yt I T A2 KRB v(t,x), B

7 2 ess sup{(l +1)* \a<v(t,x),x*> |:1=0,x" eX",

w), B & F = B W R B 5 F E

: |\<1}< T oo # x e X #h Ak, B ] HIA,

A oKk B M v (t, x), B #% &

ess sup{e"‘” \ %(v(l,x),ﬁ) |:1=0,x" eX”, ||x* ||s1}< to g xeX9AhKR IEHT R TEH

Y(A, k) #= H(A, w) ¥4 Banach 214, H Y(A, k) #2 H(A, 0) ¥):E BN X, A £ Y(A k) o4 B+

Al o B —A— K AR Cosine FF FH{C(1) },=, 5%;&11?11—” C(t+h) = C(D) lyu o <M +1)*, V1t

=00 A f£ H(A, o) L83 FH 5 FAly,, 28— A — kA% Cosine T & (C(1)] o iR

hm—HC(Hh) — C(D) [l o,y <Me”", Y 1=0.

h—0+
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