Journal of Southeast University (English Edition)

Vol. 23, No. 3, pp. 327 - 332

Sept. 2007 ISSN 1003—7985

Retrieving reuse component based on semantic

Wang Yan

Chen Ming

Zhao Jianhui

(Department of Computer Science and Technology, China University of Petroleum, Beijing 102249, China)

Abstract: According to the current research status of component retrieval, the component description model

based on facet classification is improved by adding semantic features. Furthermore, the component retrieval

process model is put forward by combining the domain ontology with the relative concept match algorithm. A

detailed illustration of a component reasoning engine and a component classification engine is given and the

component classification algorithm is provided by using the Naive Bayes algorithm based on domain ontology.

The experimental results show that the recall ratio and the precision ratio are obviously improved by using the

method based on semantics, and demonstrate the feasibility and effectiveness of the proposed method.

Key words: domain ontology; facet classification; naive Bayes algorithm; component matching; component-based

software development

1 Background

In recent years, component-based software devel-
opment (CBSD) has already become a research hotspot
in the software engineering domain. With software re-
use development and component repository scale ex-
pansion, how to enhance retrieval efficiency has be-
come a key technical issue. The current component re-
trieval method is mainly divided into four types: the
specification matching method, the artificial intelli-
gence method, the hypertext method and the informa-
tion science method'' ™.

1.1 Component retrieval based on specification
matching

According to the actual form, specification matc-
hing is mainly divided into signature matching”' and
behavioral matching'*'. It can integrally describe the
component computation semantics, and the accuracy of
the retrieval is higher than that of the non-formalized
method. But the description of the specification retriev-
al is more complex and the response time depends
more on the adopted method. So at present this method
has not been used widely.

1.2 Component retrieval based on artificial intelli-
gence

This method can be divided into component re-
trieval based on sampling behavior', component re-
trieval based on knowledge library and component re-
trieval based on the artificial neural network. The com-

Received 2007-05-18.

Foundation item: The National Natural Science Foundation of China
(No. 60072006) .

Biographies: Wang Yan (1974—), female, lecturer, wyhbsh@ yahoo.
com. cn; Chen Ming (1949—), male, professor, chenming @ cup. edu.
cn.

ponent retrieval based on sampling behavior is only
suitable for the code level component and mainly used
in the specific library whose sample is relatively sim-
ple. The component retrieval based on the knowledge
library is more accurate and efficient than the retrieval
method based on key words, but the knowledge library
is usually realized by manual methods, so its costs are
very high. The component retrieval based on the artifi-
cial neural network requires the invariable dimension of
the input vector. If the dimension changed, the algo-
rithm would be redesigned. So this method depends
more on artificial neural network technology.
1.3 Component retrieval based on hypertext

This method adopts hypertext-linking technology,
so it is mainly suitable for linear retrieval. It requires
that the user manipulate the browsing process. It is dif-
ficult for the more complex component repositories and
it is only used for auxiliary retrieval.
1.4 Component retrieval based on information sci-

ence

The component retrieval based on information sci-
ence is more successful in practical application. The
common uses of this method are enumerations, facet,
the attribute value and the key word. Because of its
simple realization and rich expression, the method'
based on facets is paid more attention to. The compo-
nent classification method based on facets is proposed
by Reboot and NATO. But this method cannot describe
the component semantics feature efficiently; therefore,
it may bring little influence on the recall ratio and pre-
cision ratio of the retrieval.

2 Ontology Model in Specific Domain

Ontology is a conceptual model that can describe

328 Wang Yan, Chen Ming, and Zhao Jianhui

the system at the semantic and the knowledge levels.
The purpose of this method is to gain the knowledge of
the domain in a universal way. It provides the consist-
ent understanding'”' to the concept in the domain, and
strengthens the computer handling ability of the knowl-
edge. Ontology has been widely applied in different
fields of retrieval.

At present there are many methods of constructing
the ontology model, for example skeletal methodology,
Tove (Toronto virtual enterprise) and so on, but the
ontology construction has not formed a normative crite-
rion. It is good just playing well under its research en-
vironment. The main goal of this paper is to satisfy the
demands of component retrieval, so we synthesize the
existing construction ontology method and simplify the
existing component domain ontology method.

Definition 1 (domain ontology) Using 3-tuple
(C,A, R), where C represents the concept set in the do-
main, A represents the attribute set in the domain, and
R represents the domain ontology element relation set.
R, € R, R, represents the mapping relationships among
concepts and the key words; R, € R, R, represents syn-
onymy relationships among the key words, R, € R, R,
represents the part of relationships among concepts; R;
e R, R, represents the concept level relations.

We create the domain ontology model by using
the concept chart and describe the domain ontology by
using OWL (web ontology language) class, attribute,
class axiom and so on. We also use the ontology edi-
tion tool (for example the quite famous Protégé tool)
in the graphical user interface, and then automatically
produce the OWL language description.

3 Component Description Model Based on
Semantic

The existing component description method has
given a more exhaustive consideration to the static fea-
ture of the component and has obtained a good solu-
tion, but it does not provide an effective method for
dynamic feature description, while the dynamic feature
is precisely one of the most important reasons that the
retrieval quality (recall ratio, precision ratio and re-
trieval capability) is affected. In order to solve this
problem, we combine the interface description with the
domain ontology. The interface realizes one service
function; it is connected with the concept that expresses
this service function in the domain ontology. The input
and output data of the interface are all described by the
corresponding concepts in the domain ontology. So we
can annotate the semantics of the interface service by
using the domain ontology concept. By using this com-

ponent description method, the service semantics pro-
vided by the component can be understood better on a
higher level, and it also supports the retrieval, the matc-
hing and confirmation of the component effectively.

Definition 2 (component) The component is de-
fined as the software unit that can be reused, and it has
semantic integrity and correct grammar. The component
is the complex of the basic information (C _Baselnfor-
mation), component facet (C _Facet), component inter-
face (C _Interface) and component entity (C _Entity).

Component: : = (C_ Baselnformation, C _ Facet,
C _Interface, C _Entity).

Definition 3 Component basic information (C _
Baselnformation) mainly refers to the static informa-
tion of the component, it includes the following parts:
component ID, component name, component author,
component function, component version, component
size and component issue date. C_ BaseInformation: :
=(C_ID, C_Name, C_ Author, C _ Function, C_ Ver-
sion, C_Size, C_Date).

Definition 4 Component facet refers to the con-
text that understands the component. Each facet is
composed of a group of terms. The component facet is
composed of component function, application environ-
ment, component type and operated object. C _ Facet: :
= (C _ Function, Application _ Environment, C _ Type,
Operated _ Object). Where the component function re-
fers to the service and function provided in the original
software system, the application environment refers to
the hardware or the software platform where the com-
ponent is used; the component type refers to different
stages of abstract levels in the software development
history; the operated object refers to the object that the
component operates (Generally it refers to the entity
object that is involved in the domain).

Definition 5 (component interface) The com-
ponent interface is the medium through which the com-
ponent can exchange information with other compo-
nents or the external environment. It includes the serv-
ice request interface and the service provision inter-
face. The interface is composed of interface name, in-
terface function and interface semantic. C _ Interface: :
= (Interface _ Name, Interface _ Method, Interface _ Se-
mantic).

Definition 6 The interface method is composed
of method name, method function and method parame-
ter. Interface _ Method: : = { Method _ Name, Method _
Function, Method _ Parameter) .

Definition 7 (interface semantic) Interface se-
mantic can be divided into four parts, which are inter-
face function, interface operation, interface parameter

Retrieving reuse component based on semantic 329

and interface relationship. Interface _ Semantic: : = {In-
terface . Function, Interface Operation,
_Parameter, Interface _ Relationship). Where the inter-
face function description corresponds to the service
function in the domain ontology; the operation corre-
sponds to the concept of action in domain ontology;
and the parameter description corresponds to the infor-
mation resource in the domain ontology.

Definition 8 The interface relationship refers to
the relationship between the components. It mainly in-
cludes version relationship, cooperation relationship, re-
finement relationship, inclusion relationship and de-
pendence relationship. Interface Relationship:: =
(Version _ Relationship, Cooperation Relationship,
Refinement _ Relationship, Inclusion _ Relationship, De-
pendence _ Relationship). Where the version relation-
ship refers to the relationships among the versions that
the component has evolved, cooperation relationship
refers to the relationships among various components
that mutually cooperate and complete a task together;
refinement relationship refers to the relationships
among the components on the neighboring stage of the
software life cycle; inclusion relationship refers to the
containing relationships among different forms of com-
ponents; dependence relationship is one kind of using
relations, which means the change of a component will
affect the use of other components.

Definition 9 Component entity refers to the in-
stance that satisfies the interface specification and the
semantic description. The concrete expression of the
component entity is as follows:

C _Entity: : = (Index, Implementation - Body)

Interface

4 Model of Component Retrieval Process

4.1 Ontology reasoning engine and component
classification engine

The domain ontology reasoning engine uses the
basic algorithm of mapping the key word for a con-
cept. It namely finds the key word in the domain on-
tology, then maps the relation for a concept according
to the relationships among the key words. For those
concepts which have the part of relation, the domain
ontology reasoning engine outputs the whole concept
instead of the partial concept and replaces the concrete
level concept by the more abstract one if there is a lev-
el relationship among the concepts.

The component description consults the compo-
nent description method'™ from the component retrieval
based on facet, the feature information is described as

D={T,,T,,T,, ..., T,}, where T, is a domain feature

of the component, and it is also an element in the do-
main ontology. The ontology reasoning engine trans-
forms T, into concept W, by using relationships in the
domain ontology. Then D ={W,, W,, W,, ..., W,}.

The component classification engine divides the
component into different categories according to the
component classification algorithm, then creates a com-
ponent index library for the component repository ac-
cording to this classification, namely each category is
connected with an index library, the table in the index
library records all component IDs. When retrieving a
kind of component, the system directly finds the com-
ponent storage position in the index library according
to the component ID, so it can enhance the component
retrieval time of response.

The component classification algorithm uses the
naive Bayes algorithm, the component domain feature
information is described as D = {W,, W,, W,, ..., W.};
the domain feature W, is substituted into the naive
Bayes algorithm, and then obtains the following equa-
tion:

Vs = arg maxP(C)) H P(m)

i G
where P(C;) indicates the frequency of the component
category C in training data; P(w,/C;) indicates the fre-
quency of the domain feature w, which appears in com-
ponent category C;; V\, represents the target value of
the naive Bayes classification. This target value deter-
minates the category which the component belongs to.
In the actual classification process, we use the follow-
ing equation to estimate P(w,/C;) for avoiding the sit-
uation of P(w,/C;) =0.
p(%) - n, —1
(C,) n + | Vocabulary |

where n expresses the total feature number that appears

in this category; n, indicates times the feature w, ap-

pears; | Vocabulary | expresses the total feature number
in the training set.
4.2 Component retrieval and matching

Component retrieval and matching is one of the
key techniques for accomplishing software reuse. Along
with the component repository scale expansion, how to
find the appropriate component in the repository is a
difficult problem. This paper constructs an intelligent
component retrieval model based on the facet classifi-
cation method, and adopts a user interface based on
the natural language inquiry. The retrieval process is
given in Fig. 1.

330 Wang Yan, Chen Ming, and Zhao Jianhui

Natural language
processing

Domain ontology repository

Create initial <—| Ontology reasoning engine |
inquiry
. User Inquiry
interface expansion
Classification
. Component engine
Refining irieval
retmeval Repository
and matching management

Fig.1 Component retrieval model based on semantics

The retrieval method contains the following four
steps:

(D Creating the initial inquiry: The user puts for-
ward the retrieval demand based on natural language,
then creates the user’ s initial inquiry by using the natu-
ral language analysis, namely, transforming the user
inquiry into the concept chart which expressed in the
OWL language. This step involves natural language
understanding and transforming the natural language to
OWL language technology. This function consults the
learning method based on cases'” . First, a case library
is built and the library stores the inquiry sentence and
the corresponding OWL case set that is transformed
from the inquiry. Secondly, finding the similar inquiry
sentence in the case library, the new inquired sentence
can be transformed into the corresponding OWL case.
This case library is small in its initial period, while the
natural sentence analysis quality has the direct relation
to the case library scale. Therefore, it is necessary to
expand the case library gradually. Fig.2 shows the nat-

ural language query based on case learning.
Natural language query Thesaurus

#

[Similarity matching | Case library (OWL)]

ISemantic description (OWL)I = | Storage update

Output (OWL)
Fig.2 Natural language query based on case learning

) The inquiry expansion and refining: First, the
concept and the key words (which are used in the ini-
tial inquiry chart and are relative to the service func-
tion) are matched with the concept in the domain on-
tology; if the semantic similar degree satisfies the
threshold value, the concept will be taken as the related
concept and returned to the user for expanding the in-

quiry. In the inquiry expansion process, the user deter-
mines the desired domain ontology service function and
its relationship with other concepts, then it establishes a
retrieval context, refines the initial inquiry and pro-
duces the user’s final inquiry.

(3 Retrieving the desired component: In the above
process, we expanded the correlation service function
by using the semantic match according to the user’ s in-
quiry and obtained the final inquiry condition of the
component which is expressed in the OWL language.
The final inquiry condition is divided into the function
demand and the non-function demand (for example
language, running environment and so on). It then re-
trieves from the interface list according to the function
demand. The percentage of the interface satisfying
function demand expresses the behavior correlation de-
gree. If the behavior correlation degree of the interface
set is higher than the threshold value, the interface set
sorted by its behavior correlation degree will be re-
turned to the user. The user determines the component
interface that matches his need. According to the in-
quiry’ s non-function demand and the interface, the sys-
tem retrieves the corresponding component. If the de-
sired component exists, the user may sort and choose
the component according to other attributes (for exam-
ple running rate, security rank), otherwise the user may
retrieve again by the offered relative interface. The user
is submitted not only the retrieved component basic in-
formation, but also the component assembly pattern
formed by the relations (such as call, use) with the
other interfaces.

(@ User feedback: The user decides the usefulness
of these components and provides the feedback, then
adjusts the related threshold value according to these
feedbacks.

5 Concept Matching Algorithm Based on
Semantic

In the process of the inquiry expansion, the service
function is properly expanded through the semantic
matching. Namely, it provides other related functions

Retrieving reuse component based on semantic

331

to the user according to the semantically similar algo-
rithm. Its algorithm description is as follows.

Definition 10 The semantics distance between
the concept Distance (C,, C,) represents the sum value
of the n side weight on the shortest path semantic tree
which is given by the following equation:

Distance(c,, c,) = z Weight,
i=1

where Weight, indicates the weight of the number i
side on the shortest path that connects C, and C,.

Because the domain ontology is stored by the up-
side down tree structure, according to the subjective
judgment, the similar degree of the concept far from
the root in the level tree is greater than that of the con-
cept near to the root. Therefore, the concept depth in a
tree is an important factor that should be considered.
Different depth sides in the tree should be evaluated
different weight values.

Definition 11 The depth degree of concept C in
the tree Depth(C) refers to the side number n contai-
ning in the shortest path between the concept and the
tree root. Depth(C) =n, where n is the side number of
the shortest path.

Definition 12 Width degree between the con-
cepts; Width(C) refers to the children node number
under the same depth.

Definition 13 (weight value of concept C,
Weight (C)) Because the side drawn out from concept
C has an equal weight value, we stipulate that
Weight(C) refers to the weight value of the side that is
drawn out from concept C. It has the inverse ratio with
the concept depth degree, and has the inverse ratio with
the width degree of the concept in the same depth. The
equation is as follows:

According to the above definitions, we have made
the convert equation of the semantic similar degree and
the semantic distance:

Sim(c,, ¢,) =1 - a/Distance(c,, ¢,)

Parameter o € (0, 1) may be determined through
many times of experiments, Sim(c¢,, ¢,) €(0,1).

The similar degree between the two concept sets
is as follows:

Supposed that M =(m,, m,, ..., m.), N =(n,, n,,
...,) are two concept sets, SimofSet(M, N) expresses
the similar degree between the two concepts, and the
equation is

x y

SimofSet(M, N) = 2

2 2 Sim(m;, n;)

When retrieving the interface, the user inputs the
concept or the concept set in view of some feature, u-
sing the above equations to calculate the concept se-
mantic similar degree in the interface list. The user can
choose the proper one according to the sorted compo-
nent. Then the user obtains the desired component
through the map between the interface and the compo-

nent entity.
6 Experimental Results

In order to validate the feasibility of the compo-
nent retrieval based on semantics (CRBS), we test the
existing teacher appraised component repository
(TACR) by two retrieval methods: CRBS and compo-
nent retrieval based on facet(CRBF). TACR has 150
actual components and 240 virtual components. By in-
putting different functions, the tester can obtain differ-

Weish 1 1 ent data about the precision ratio and the recall ratio.
eignt = N .
ght(€) Width(C) Depth(C) +1 Tab. 1 shows the experimental results.
Tab.1 Experimental results of CRBS and CRBF
Desired Undesired Missed Precision Recall
Category . .
functi component component component ratio/ % ratio/ %
unction
CRBF CRBS CRBF CRBS CRBF CRBS CRBF CRBS CRBF CRBS
Database operation 8 9 1 1 1 0 87.5 88.9 87.5 88.9
Text fi t
ex o 6 8 0 0 2 0 100 100 75 100
transformation
Template management 7 7 1 1 0 0 85.7 85.7 85.7 85.7
Previ luat
review evauate 6 7 0 0 I 0 100 100 85.7 85.7
template
Establishes
. 10 12 1 1 3 1 90 91.7 75 91.7
questionnaire
Questionnaire management 12 13 0 0 1 0 100 100 92.3 100
Questionnaire evaluate 9 9 0 0 0 100 100 100 100
Template fr
emprae Trame 10 1 0 0 1 0 100 100 90.9 100
management
Total 68 76 3 3 9 1 95.6 98.6 87.8 98.6

332

Wang Yan, Chen Ming, and Zhao Jianhui

Definition 14 Precision ratio refers to the ratio
of the desired retrieval components to the total retrieval
components.

Definition 15 Recall ratio refers to the ratio of
the desired retrieval components to the total related
components in the component repository.

From Tab. 1 we conclude that the component re-
trieval based on semantics is obviously higher than the
component retrieval based on the facets in the recall ra-
tio, and it is slightly higher than the component retriev-
al based on the facets in the precision ratio.

7 Conclusion

In this paper, a component retrieval model based
on semantics is put forward. We use the proper match-
ing algorithm between the user demand and the compo-
nent entity and enhance the component precision ratio
and the recall ratio. In the experiment, the naive Bayes
algorithm requires a larger training set as the compo-
nent quantity is not enough in TACR; therefore, we
add some virtual components to the training set. The
main characteristic of this system is to create a classifi-
cation engine by combining the naive Bayes algorithm
with the domain ontology and introducing the intellec-
tual processing method in the component retrieval. The
future work includes: (1) Improving the domain ontolo-
gy repository and accurately mapping to the component
features of this domain; (2) Enhancing the response
time of the component retrieval.

References

[1] Frakes W B, Pole T P. An empirical study of representation

[2]

[3]

[4]

[5]

(6]

[7]

(8]

(9]

methods for reusable software components [J]. IEEE Trans-
actions on Software Engineering, 1994,20(8):617 —630.
Mili H, Rada R, Wang W, et al. Practitioner and SoftClass: a
comparative study of two software reuse research projects
[J]. Systems and Software, 1994,27(5):147 —170.
Zaremski A M, Wing J M. Signature matching: a tool for
using software libraries [J]. ACM Transactions on Software
Engineering and Methodology, 1995,4(2):156 —180.
Zaremski A M, Wing J M. Specification matching for soft-
ware components [J]. ACM Transactions on Software Engi-
neering and Methodology, 1997, 6(4):333 —369.

Podgurski A, Pierce L. Retrieving reusable software by sam-
pling behavior [J]. ACM Transactions on Software Engi-
neering and Methodology, 1993,2(3):286 —303.

Zhang Yong, Zhu Sanyuan, Qian Leqiu, et al. A matching
model for software component classified in faceted scheme
[J1. Journal of Software, 2003, 14(3): 401 —408. (in Chi-
nese)

Chen Gang, Lu Rugian, Jin Zhi. Constructing virtual domain
ontologies based on domain knowledge reuse [J]. Journal
of Software,2003,14(3) : 350 — 355. (in Chinese)

Gao Qiang, Zhang Xiaoming, Bian Xiaofan. The study of
faceted classification scheme of the specific domain-based
RSL[J]. Computer Engineering and Applications, 2003, 39
(30):82 —84. (in Chinese)

Soo Von-Wun, Lee Chen-Yu, Li Chung-Cheng, et al. Auto-
mated semantic annotation and retrieval based on sharable
ontology and case-based learning techniques|[C]// Proceed-
ings of the Third ACM/IEEE-CS Joint Conference on Digit-
al Libraries (JCDL’03). Huston, 2003: 61 —72.

ETEXHHGEE

I & &

W REAE

(P B &KX FHHEMAFEEAR R, LT 102249)

PR ARAEA A R 09 TS ILIR 3B 3 A B S AR, B T R T 20 & o K e Mk 6 i AR AL 25 AR
AR T R T35 U e & AR R AR B 09 I A iE LR B vk, e R T B e i phis ka2
AR o xf A e AR AR IR 5] B M R T R RILBAT T il e B T et b R R A
MR P e AR R, KRR, A TELGM R T ERB T UG E LR E R EW T 2

77 ik 0 AT A R R

KRR ATIRAAR s 20 B 55 5 5 AN FE WUk A7 ST v s M IR B 5 AR T A PR 0 PR TR

HESHES TP311

