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Abstract: Due to the fact that semantic role labeling (SRL) is very necessary for deep natural language

processing, a method based on conditional random fields (CRFs) is proposed for the SRL task. This method

takes shallow syntactic parsing as the foundation, phrases or named entities as the labeled units, and the CRFs

model is trained to label the predicates’ semantic roles in a sentence. The key of the method is parameter

estimation and feature selection for the CRFs model. The L-BFGS algorithm was employed for parameter

estimation, and three category features: features based on sentence constituents, features based on predicate, and

predicate-constituent features as a set of features for the model were selected. Evaluation on the datasets of

CoNLL-2005 SRL shared task shows that the method can obtain better performance than the maximum entropy

model, and can achieve 80.43% precision and 63. 55% recall for semantic role labeling.
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In recent years, there has been increasing interest
in semantic role labeling (SRL). A semantic role is the
relationship between a syntactic constituent ( verb argu-
ment) and a predicate in a sentence. It identifies the
role of a verbal argument in the event it is expressed
by the verb: an agent, a patient, an instrument, etc. and
also adjuncts such as location, time, manner, cause, etc.
So, the semantic role is the role given by the verb to its
arguments. The SRL task consists of analyzing and rec-
ognizing the arguments of the verbs and determining
the role they play in a sentence.

For deep natural language processing (NLP), the
process of fine-grain semantic role labeling is one of
the prominent steps, which provides semantic relation-
ships between constituents. The sense relationships be-
tween constituents are the core meaning of a sentence.
Recently, more and more natural language processing
(NLP) applications, including information extraction
(IE), question answering (QA), and semantic dialogue
systems are expecting support from semantic role labe-
ling.

Some semantically-annotated corpus, such as
PropBank'" and FrameNet'”', have been manually built
in English. The PropBank defines six main arguments:
Arg0 to Arg5. For example, Arg0 is the agent, and
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Argl is the patient, etc. ArgM- may indicate adjunct ar-
guments, such as location and time. FrameNet is based
on the theory of frame semantics. A frame represents a
scenario in terms of the interaction of its participants,
and these participants play certain roles. Verbs and
nouns can be used to identify a frame and the annota-
ted sentences in each frame show the possible semantic
roles for a given target word. Gildea and Jurafsky'”
were the first to apply a statistical method to the
FrameNet data. They used a linear interpolation method
and extracted features from a parse tree to identify and
classify the constituents in the FrameNet with syntactic
parsing results. Most of the following works have fo-
cused on feature engineering'*’ and machine learning
models””" .

In this paper, we apply conditional random fields
(CRFs) to the task of SRL. CRFs'"™ are undirected
graphical models which define a conditional distribu-
tion over labels given an observation. These models al-
low for the use of very large sets of arbitrary, overlap-
ping and non-independent features.

1 Conditional Random Fields
CRFs are defined as follows. Let O ={o,, 0,, ...,

o,} denote some observed input data sequences such as
a sequence of phrases or named entities in training da-
ta. Let S = {s,, 8,, ..., s;} be a set of finite state ma-
chine (FSM) states, each of which is associated with a
label (such as Arg0, Argl, ArgM-LOC). CRFs define
the conditional probability of a state sequence given an
input sequence O as
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p(Slo) = ZLexp( 2 2 AJi(s,_y,8,0,0) )

t=1

(D
where Z, is a normalization factor over all candidate
paths; f, (s,_,, s,, 0, t) is an arbitrary feature function
over its arguments; and A, is a learned weight for each
feature function. Given such a model as defined in Eq.
(1), the most probable labeling sequence for an input

o,
St = arg max P(S | 0) (2)

can be efficiently calculated by dynamic programming
using the Viterbi algorithm. Some previous studies
show that two key problems in the application of CRFs
are parameter estimation and feature selection.
1.1 Parameter estimation

Given the parametric form of a CRF in Eq. (1),
fitting empirical distribution involves identifying the
values of parameters A, which can be estimated by
maximum likelihood, i. e. maximizing the log-likeli-
hood L,—maximizing the conditional probability of a
set of label sequences, each given their corresponding
input sequence. The log-likelihood of training set
{(0,,S,):i=1,2,..., N} is written as

LA = ZPA(S,‘O,) =

Z ( Z ZAkfk(Sz—Usr’O’ 1) —lOgZOi ) (3)

To maximize L,, we have to maximize the differ-
ences among the correct paths and those of all other
candidates. Lafferty et al.'® introduced an iterative
scaling algorithm for Eq. (3) L, and reported that it
was exceedingly slow. Several researchers have imple-
mented gradient ascendant methods, but naive imple-
mentations are also very slow, because various A, pa-
rameters interact with each other. Increasing one pa-
rameter may require compensating changes in others.
Sha and Pereira'' used the limited memory quasi-New-
ton (L-BFGS)"”", which is shown to be several orders
of magnitude faster than iterative scaling. L-BFGS can
simply be treated as a black-box optimization proce-
dure, requiring only that the value and first-derivative
of the function to be optimized be provided. In this pa-
per, we employ L-BFGS to estimate the parameters for
the CRF model.

1.2 Feature selection and feature induction

To analyze the contribution of different kinds of
features, we divide the features into three categories:
features based on sentence constituents, features based
on predicate and predicate-constituent features. Features
based on sentence constituents are these features rela-
ting to sentence constituents. The features based on

sentence constituents we use are summarized in Tab. 1.
Tab.1 List of features based on sentence constituents

Number Feature name Description
F, PhraseType Syntactic category of the constituent
F, NEType Type of NE in the constituent
F; HeadWord Head word of the constituent
F, POS Part of speech of the constituent
Fs FirstWord First word of the constituent
Fg LastWord Last word of the constituent
F; Prepositions Preposition of the constituent
Fy PreviousUnit Previous semantic label of the constituent
Fy NextUnit Next semantic label of the constituent

F WordNumber Number of words in the constituent

Features based on the predicate are those features
relating to the predicate of a sentence. The features we
use are summarized in Tab. 2.

Tab.2 List of features based on predicate

Number  Feature name

Fy PredicatePOS
Fy,  PredicatePostion
Fi3 PredicateVoice
Fiy PredicateSense

Description

Part of speech of the predicate
Position of the predicate
Grammatical voice of the predicate

Sense of the predicate

Predicate-constituent features are those features
which denote the relationship between the predicate
and the constituent. The predicate-constituent features
we use are summarized in Tab. 3.

Tab.3 List of predicate-constituent features

Number Feature name Description

Parse tree path from the predicate to the

F Path . . .
constituent. Fig. 1 is an example of path.
Fiq PathLength The nodes number on the parse tree path.
» The relative position of the constituent and
F, Position

the predicate, before or after.

She bought DlT N|N I|N Nf]
v

the silk in China
Argl ArgM-LOC

Fig.1 In this example, the path from the predicate “bought” to
the constituent “she” can be represented as VBD 1 VP 1S | NP

2 Using CRFs for Semantic Role Labeling

We can easily cast the SRL task as a sequence
labeling problem, and apply CRFs to the task. To re-
duce the length of the sequence, we first transform the
data from the original word-based format to a phrase-
based format via shallow parsing. In this representa-
tion, the basic token is a phrase or named entities, and
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its spelling and part-of-speech ( POS) tags are re-
placed by those of its head word. Now, the SRL task
can be attributed to such a computational problem:
First, transform the parsing trees into the uniform syn-
tactic representation. Secondly, the object verb and its
arguments boundaries are determined. Thirdly, label
the suitable semantic roles for different phrases or
named entities using CRF, based on the role informa-
tion and features described in the corresponding fea-
ture functions.

3 Experiments

To test the performance of the semantic role la-
beling based on CRFs, we trained the CRF model on
training datasets. We perform different experiments
under different features and different numbers of train-
ing sentences are used. For comparison we use the
maximum entropy classifier to the SRL task as a base-
line.

3.1 Experiment datasets and evaluation metrics

In order to build the SRL system based on
CRFs, we use the benchmark corpus provided by
CoNLL-2005 SRL shared task as training and test
sets. The datasets consist of sections of the Wall Street
Journal (WSJ) part of the Penn TreeBank, with infor-
mation on predicate-argument structures extracted
from the PropBank corpus. We follow the standard
partition used in syntactic parsing: sections 02 to 21
for training, and section 23 for testing. The system is
evaluated with respect to precision (P), recall (R),
and F, of the predicted arguments, F, =2PR/(P +
R).

3.2 Experimental results
3.2.1 Experiment of combined features

In any corpus-based approach a tuning process is
needed in order to obtain a set of features that maxi-
mizes the results. In order to do this, we have used a
k-fold cross validation evaluation method with K =5.
In this kind of method the training dataset is divided
into k subsets, and the holdout method is repeated k
times. Each time, one of the k subsets is used as the
test set and the other k — 1 subsets are put together to
form a training set. Then the average error across all k
trials is computed. The advantage of this method is
that is matters less how the data gets divided. Every
data point is in a test set exactly once, and is in a
training set k — 1 times. Results regarding this tuning
procedure are shown in Tab. 4. These results show
that different features sets have different perform-
ances.

Tab.4 Experimental results using different features %

Features P R F,
A random set of ten features 61.04 56.79 58.84
F,, F, 58.18 45.28 50.93
Fy,F3,F,, Fys 60. 67 52.39 56.23
F\.F3, Fy, Fp Fy, Fis, Fiy 64.23 55.98 59.82

Fy, Fy,Fs,Fg, Fg, Fg, Fio, Fi3, Fis, Fi; - 69.38 60.17 64.45
Fi Fy Fy, Fy, Fr, Fg, Fro, Fiy, Firs, Fig 72,78 62.18 67.06
Fy, F3,Fs, Fg, Fy, Fg, Fiy, Fi3, Fi5, Fig - 76.06 63.58 69.26
F\,F,,F5,Fy,F;,Fg, Fy, F,, Fy, Fis, Fi; 80.43 63.55 71.00
F,,Fy,F,,Fs,F¢,F;,Fg, Fyg,
Fi\,Fyy, Fi3, Fiy, Fis, Fig, Fig

All features

80.26 61.33 69.53

78.39 60.69 68.41

3.2.2 Experiment of different numbers of train-
ing sentences

In general, the SRL system performance varies
for different numbers of training sentences used.
Thus, several sets of experiments are performed, each
using a different number of training sentences. As
shown in Fig. 2, labeling performance steadily im-
proves as the number of training sentences is in-
creased.

—&— Prcision —A— F;
—— Recall

3
S5 10 15 20 25 30 35
Number of training sentences/10°

Fig.2 Performance of the method for different sizes of
training set
3.2.3 Experimental results for semantic role la-
beling
Tab. 5 shows detailed results of different kinds of

roles using CRFs and ME on the same testing set.
Tab.5 Experimental results for SRL using CRFs and ME %

Semantic CRFs ME

roles P R F, P R F,

Arg0 86.47 81.26 83.78 85.17 82.87 84.00
Argl 81.90 75.82 78.74 82.23 71.88 76.71
Arg2 72.36  60.18 65.71 73.69 62.81 67.82
Arg3 82.50 40.69 54.50 80.14 42.77 55.77
Argd 86.77 65.80 74.84 82.98 61.99 70.97
Arg5 97.66 37.52 54.21 89.16 42.67 57.72

ArgM-ADV ~ 60.98 41.66 49.52 61.02 43.78 50.99
ArgM-CAU  62.55 35.89 45.61 56.15 45.89 50.50
ArgM-DIR 67.01 34.56 45.60 60.18 44.56 51.21
ArgM-DIS 69.34  77.24 73.08 67.02 71.93 69.39
ArgM-EXT  76.39 56.02 64.64 71.98 52.47 60.70
ArgM-LOC  75.89 59.34 66.60 77.89 62.06 69.08
ArgM-MNR  66.19 50.29 57.15 64.37 51.95 57.50
ArgM-MOD  99.03 93.56 96.22 84.29 79.78 81.97
ArgM-NEG  95.97 98.16 97.05 78.06 89.23 83.27
ArgM-PRD 96.77 87.34 91.81 84.04 90.00 86.92
ArgM-PRP 87.59 79.00 83.07 83.98 69.00 75.76
ArgM-TMP  82.29 69.50 75.35 80.45 71.03 75.42

Overall 80.43 63.55 71.00 75.71 63.15 68.86
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From Tab. 5, it can be found that the method based on
CRFs obtains better performance than the maximum
entropy model, both precision and recall of the method
are raised: for the baseline from 75.71% to 80.43%
for precision and from 63. 15% to 63.55% for recall.

4 Conclusion and Future Work

This paper is dedicated to the problem of semantic
role labeling using CRFs. Our method takes shallow
syntactic parsing as the foundation, and takes phrases
or named entities as the labeled units. Experimental re-
sults show that the method obtains better performance
than the maximum entropy model. The main current
limitation of CRFs is the slow convergence of the train-
ing algorithm. In future work, we plan to do more re-
garding the training algorithm.
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