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Abstract: The existing ontology mapping methods mainly consider the structure of the ontology and the

mapping precision is lower to some extent. According to statistical theory, a method which is based on the

hidden Markov model is presented to establish ontology mapping. This method considers concepts as models,

and attributes, relations, hierarchies, siblings and rules of the concepts as the states of the HMM, respectively.

The models corresponding to the concepts are built by virtue of learning many training instances. On the basis of

the best state sequence that is decided by the Viterbi algorithm and corresponding to the instance, mapping

between the concepts can be established by maximum likelihood estimation. Experimental results show that this

method can improve the precision of heterogeneous ontology mapping effectively.
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Currently, although a great many web pages have
been built in the world-wide web, the vast majority of
them are in human-readable format only (e. g. HT-
ML). As a consequence, software agents cannot under-
stand and process this information, and much of the po-
tential of the web has so far remained untapped'' . In
response, researchers have created the vision of the se-
mantic web'™ , where data has structure and ontologies
describe the semantics of the data. Ontologies allow us-
ers to organize information into taxonomies of con-
cepts, each with their own attributes, and to describe re-
lationships between concepts. When data is marked up
using ontologies, software agents can better understand
the semantics and, therefore, more intelligently locate
and integrate data for a wide variety of tasks.

Ontologies are playing an important role in the se-
mantic web, however, as a result of the decentralization
of the web, the heterogeneous ontologies in different
domains and even in the same domain come out. Heter-
ogeneous ontologies block the intelligence interopera-
tion between computers and impair the validity of the
interoperation. But researchers have put forward ontolo-
gy mapping mechanisms to establish mapping between
heterogeneous ontologies. In the past, ontology map-
ping was performed manually, but manual mapping is
tedious work. Hence, the task of finding mapping
(semi-) automatically has been an active area of re-
search in the ontology community. Currently, the major
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approach to ( semi-) automatic ontology mapping is
based on structure, synset, semantic neighbor'”' | heuris-
tics, machine learning techniques or formal concept
analysis. The anchor-PROMPT'" system exploits the
general heuristic that paths between matching elements
tend to contain other matching elements. Cupid™ im-
plements a hybrid matching algorithm comprising lin-
guistic and structure schema matching techniques.
RiMON'® which is based on the Bayesian decision the-
ory treats the mapping problem as a decision problem
and formalizes mapping discovery in the same way as
that of risk minimization. Glue''" uses multiple learners
and a probabilistic model to perform ontology map-
ping.

Instances play an important role in establishing
ontology mapping and hold interrelated structure infor-
mation. According to statistical theory, a method which
is based on the hidden Markov model (HMM)'' is
brought out to establish ontology mapping. Our method
considers the attributes, relations, hierarchies, siblings
and rules as the states of HMM, and HMM is built by
virtue of training instances. Mapping between the con-
cepts can be established by searching the best HMM
model that the instances belong to with the Viterbi al-
gorithm'™',

1 Primary Concept

Ontology is a formal, explicit specification of a
shared conceptualization'”’. When data are expressed
by an ontology, computers can understand their “mean-
ings” and interoperate with each other. According to
this definition which is accepted, in our opinion, a for-
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mal definition concerning ontology is as follows:

Definition 1 Ontology O = ( z ,C,F,R,

Axiom, r, [ ) , where z is a symbol list, C is the set

of concepts, F is the set of attributes, R is the set of re-
lations (e. g.R: C, xC,...Cy), Axiom CR is the set of

axioms, r =nL12R” is the set of rules where R" is n-Car-
tesian products (e. g. 72 R,, R,, ..., R,_, | =R,)), I is
the set of instances and CUA U R U I C Z "

Concept C, the abstract of the individuals in the
world, is the set of the individuals with the same at-
tributes; attribute F, which is the intension of a con-
cept, decides the differences between the concepts; R,
which is the relationship between the concepts, con-
nects the concepts to each other; Axiom is the assertion
that is objective and true in the domain; rule » connects
the relationships between the concepts to each other;
instance / is the concrete individual in the world and
the extension of the concept. In this paper, according to
the formal definition of ontology, the mapping is estab-
lished from five aspects: instances, attributes, relation-
ships, hierarchies and rules.

The HMM is a finite-state automata'” with double
stochastic processes. One is the Markov chain which is
expressed with transition probability and describes the
state transition, and the other is a general stochastic
process which is expressed with probability of observa-
tion and describes the relationships between the states
and the sequences of observation.

The HMM is expressed with a 3-tuple A = (A, B,
7), where 77 = {7, }is the initial state distribution with

N
m =P{q, =5}, 1 <i<N, Y m, =1and N is the
i=1

number of states; A ={a,;} is the matrix of state transi-
tion probability of being in state s, at time ¢ and going
to state s, at time 7 +1 with a; =P{q,,, =s; | ¢, =5,}, 1

N
<i,js<Nand0 <ga; <1, Zau =1LB = {b(v)}is
i=

the observation output probability distribution of state
and V={v,, v,, ..
expresses the observation at time t.

There are three basic HMM problems:

(D Given the observation sequence O =0,0,...0,
and an HMM model A = (A, B, 7v) with T being the
length of the observation sequence, how do we com-
pute the probability P(O | A) of O given the model?

) Given the observation sequence O =0,0,...0,
and an HMM model A =(A, B, 7r), how do we find the

., V), } is the observation list, 0, = v,

state sequence that best explains the observations?

(3 Given the training data, how do we adjust the
model parameter A = (A, B, 77) to maximize P(O | A)?

Instances are the extension of concepts, and con-
cepts are the set of instances which have the same fea-
tures. Ontology mapping based on instances judges
whether the instance of one concept belongs to another
concept. A concept is expressed by a model, and the
model which best explains the instance corresponds to
the concept the instance belongs to. When the HMM
model is trained by instances, it can solve the problem
of ontology mapping, and when the three basic HMM
problems are solved, the ontology mapping is built.
Problem (1) can be solved by the forward chain algo-
rithm or the backward chain algorithm'™'; problem (2
can be solved by the Viterbi algorithm''; and problem
) can be solved by the Baum-Welch algorithm'""' .

2 Model Expression

Instances have labels and a set of attributes,
maintain interrelationships with other instances, and are
the individuals of some concept in the hierarchy. Be-
cause there are interrelationships among attributes, rela-
tions, hierarchies, rules and siblings, one of them can
influence the others and vice versa. Instances are the
carriers of attributes, relations, hierarchies, siblings and
rules. Concepts are considered as HMM models A =
(A, B, 7). Attributes, relations, hierarchies, siblings
and rules are considered as the states of the model A =
(A, B, 7). The interrelationships among attributes, rela-
tions, hierarchies, siblings and rules are considered as
the state transition. Similarities between the concepts
are calculated according to instance recognition.

The states are defined according to the following
features:

e Attributes
cepts, decide the differences between the concepts and

Attributes are the intension of con-

reflect the inherent and essential features. If one in-
stance has the same attributes as another instance, they
belong to the same concept. The similarity according to
attributes is concerned with label (L), range (Range),
and restriction (rest), and is defined as follows:
a =avg(sim(L) +sim(Range) +sim(rest)) (1)
e Relations Relations are the connections between
the concepts. The connection between the instances is
its extension. The similarity according to relations is
concerned with labels; the neighbor instance (7), and it
is defined as follows:
r=avg(sim(L) +sim(/)) (2)

e Hierarchies  Hierarchies decide the hierarchy
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among the concepts. The instance which belongs to a
concept belongs to its super-concept at the same time.
The similarity according to the concepts is concerned
with the instances and the labels of super-concepts
(sup), the instances and the labels of sub-concepts
(sub), and is defined as follows:
¢ =avg(sim(sup) +sim(sub) +sim(/)) (3)
e Siblings Siblings locate in the same layer of the
hierarchy. The similarity according to the siblings is
concerned with instances and label, and is defined as
follows:
sibling = avg(sim(L) + sim([/)) (4)
e Rules Rules are the connection between the rela-
tions. The instances that comply with the same rules
belong to their corresponding concepts. The similarity

according to the rules is defined as follows:
rule = %2 sim(/)) (5)
j=l

3 Similarity Calculation

3.1 Ontology mapping

According to the definition of the ontology map-
ping''"': “Given two ontologies O, and O,, mapping
one ontology with another means that for each concept
in ontology O,, we try to find a corresponding con-
cept, which has the same or similar semantics in ontol-
ogy O, and vice versa”. An ontology mapping function
can be described as follows:

sim: C,, C,—[0,1] Ce0;Ce0, (6)

If sim(C,, C,) =t with sim(C,, C,) being the
similarity coefficients between C,, C,, t being the
threshold, then C,, C, have the same or similar seman-
tics.

When two concepts have shared instances, the
more shared instances they are, the more similar they
are. But when they do not have shared instances, how
do we calculate the similarity between them. According
to the mapping, the more instances which are mapped
to another concept, the more similar they are. There-
fore, the similarity between the concept C, in O, and
the concept C, in O, is defined as follows:

ny(Ay) +n,(4,)

- n, +n, N
where 7n,(A,) is the number of instances that belong to
C, and is mapped to the model A, = (A, B, 7r) corre-
sponding to C,;n,(A,) is the number of instances that
belong to C, and is mapped to A, = (A, B, o) corre-
sponding to C,.
3.2 Procedures of similarity calculation

Instances are the carriers of attributes, relations,

hierarchies, siblings and rules. Each instance is the
sample of its concept and composes an observation se-
quence. According to the observation sequence, the
HMM model corresponding to each concept of one on-
tology can be trained. For any instance of the other on-
tology, we search its best model. In summary, we esti-
mate the similarity of C, and C, as follows:

Step 1 Build the training model A =(A, B, 7r) of
each concept of one ontology O, respectively. The ini-
tial values of the parameters A, B, 77 are produced at
random and the final values are calculated according to
the Baum-Welch'"”' algorithm.

Step 2
stance according to the Viterbi algorithm "',

Decide the state sequence of each in-

Step 3 Transform each instance into an observa-
tion sequence O =0,0,0;... that is composed of attrib-
utes, relations, hierarchies, siblings and rules and calcu-
late its probabilities P( O A according to the maxi-
mum likelihood decision rule. The concept which cor-
responds to A’ = arg Amax(P(O | 1)) is the concept

that the instance belongs to.

Step 4 Calculate the number n,(A,) of instances
that belong to C, and are mapped to the model A, =
(A, B, 7r) corresponding to C,.

Step 5 Repeat step 1 to step 3 until the instance
number n,(A,) does not change any more.

Step 6
number n,(A,) of instances that belong to C, and are

Repeat step 1 to step 4, calculate the

mapped to the model A, = (A, B, w) corresponding to
C,.

4 Experiments

The matching for ontologies is implemented as an
important tool for aligning the ontology. This is called
OMHM. In order to verify the idea of similarity meas-
ure that is proposed above, we conduct experiments and
analyze its performance. The program language in the
experiments is Java whose platform and VM are
Eclipse and JDKI1.4. 1, respectively; the CPU of the
system is Intel Pentium [V 2.4 GHz; the RAM is 1
GB; the operation system is Windows 2003 Server.

We have evaluated OMHM on several real-world
domains. We tested the effectiveness of OMHM on
EON2004 ( http: //co4. inrialpes. fr/align/Contest/)
benchmark test cases (see Tab. 1), and compared it
with the content learner of Glue on three ontologies a-
bout three institutes in one college (see Tab.2). In the
experiments and mappings are established between the
reference ontology and the other ontologies, and the re-
sults are as follows from two aspects: the precision and
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recall of the query.
Tab.1 EON2004 benchmark test case

Ontology Concept Attribute Instance
Reference ontology 33 59 76
101 33 61 111
103 33 61 111
104 33 61 111
201 34 62 111
202 34 62 111
204 33 61 111
205 34 61 111
221 34 61 111
222 29 61 111
223 68 61 111
225 33 61 111
228 33 0 35
230 25 54 83
Tab.2 Test data about three colleges
Taxonomies Concept Instance Predicate
College 1 ICA 51 2135 98
ICE 47 1912 87
College 11 ICA 51 2135 98
EIEC 89 3547 132
ICE 47 1912 87
College Il
EIEC 89 3547 132

4.1 Experiment I

The experimental results are demonstrated in Fig.
1 and Fig.2 by precisions and recalls in all the test ca-
ses, excepting a few ontologies(such as 224, 301, 302,
303,304) which do not have instances and are not lis-

ted in the table.
100

Precision/ %
o8 8 8 &

101 103 104 201 202 204 205 221 222 223 225 228 230 Average
Ontology number

Fig.1 Precision on several ontologies

101 103 104 201 202 204 205 221 222 223 225 228 230 Average
Ontology number

Fig.2 Recall on several ontologies

As we can see from the results in Fig. 1 obtained
by the HMM, for a majority of ontologies, the precision
is higher than 80%, even up to completely matching a
few ontologies. The precision is a little lower in a mi-

nority of ontologies such as 205, 230, but it is also
close to 80% ; only in ontology 202 is it 60% . In Fig.
2, the recall is higher than 80% in a majority of ontolo-
gies, even up to perfection in a few ontologies such as
101, 103, 104,221, 225. Only in ontology 202, 205 is it
a little lower, about 70% .

4.2 Experiment II

The concrete information of these three institutes
is as described in Tab. 2. These three ontologies charac-
terize three institutes of one college. One is ICA, and
the other two are ICE and EIEC, respectively. They
describe resources (such as courses, teachers, students,
papers, scientific researches, entertainments, etc.) of
three institutes, where the research domain of institutes
ICA and ICE are similar to some extent, and are a little
different from EIEC. The taxonomies of College [ are
fairly similar to each other, while the taxonomies of
College Il and College Il are not very similar to each
other.

As shown in Tab. 3, the precision and recall of our
method are higher than those of the CL of Glue, espe-
cially regarding College Il and College III, because our
method makes full use of the interrelationships between
the features. Though there are not many shared in-
stances, the precision and recall of our method are all
greater than 70% . In these three ontologies our method
outperforms the CL of Glue to some extent.

Tab.3 Test result %

Taxonomies Precision Recall
OMHM 95.00 92.00

College |
CL 85.00 94.00
OMHM 86.00 88.00

College II
CL 74.00 79.00
OMHM 76.00 73.00

College I
CL 63.00 65.00

5 Conclusion and Future Work

Our work which applies machine learning tech-
niques to create semantic mapping is similar to Glue.
But Glue uses the Naive Bayes theory and assumes that
the features of the concepts are independent of each
other, while our approach which is based on the HMM
and assumes that the features are interrelated with each
other is closer to reality.

In this paper, attributes, relations, hierarchies, sib-
lings and rules are represented as the states of the
HMM, and the interrelationships among them are de-
scribed by virtue of the state transition of the HMM.
The mapping which is based on the HMM improves
the precision of ontology mapping which is based on
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instances. This method can be combined with other

strategies such as structures and reasoning to improve

the precision of ontology mapping. And it is our future

research work.

[1]

(2]

[3]

[4]

[5]

References

Doan A, Madhavan J, Domingos P, et al. Learning to map
between ontologies on the semantic web[ C]//Proceedings
of the 11th International World Wide Web Conference. Ha-
waii, 2002: 662 — 673.

Berners-Lee Tim, Hendeler James, Lassila Ora. The seman-
tic web[J]. Scientific American,2001,284(5):35 —43.
Rodriguez M A, Egenhofer M J. Determining semantic simi-
larity among entity classes from different ontologies[J].
IEEE Transactions on Knowledge and Data Engineering,
2003,15(2):442 —456.

Noy N F, Musen M A. The PROMPT site: interactive tools
for ontology merging and mapping[J]. International Jour-
nal of Human-Computer Studies,2003,59(6):983 —1024.
Bernstein Philip A, Rahm Erhard. Ge-
neric schema matching with cupid[ C]// Proceedings of the

Madhavan Jayant,

[6]

[7]

[8]

(9]

[10]

[11]

27th International Conference on Very Large Databases.
Rome, Italy, 2001: 129 — 138.
Tang Jie, Liang Bangyong, Li Juanzi, et al. Automatic ontol-
ogy mapping in semantic web[J]. Chinese Journal of Com-
puters,2006,29(11): 1956 — 1976. (in Chinese)
Rabiner Lawrence R. A tutorial on HMM and selected ap-
plications in speech recognition [ J]. Proceedings of the
IEEE, 1989,77(2):257 —286.
Forney G D. The viterbi algorithm [J]. Proceedings of the
IEEE, 1973, 61(3): 268 —278.
Studer R, Benjamins V R, Fensel D. Knowledge engineer-
ing: principles and methods[J]. Data and Knowledge Engi-
neering, 1998,25(1/2):161 —197.
Baum L E. An inequality and associated maximization
technique in statistical estimation of probabilistic function
of a Markov processes [J]. Inequalities, 1972,3(1):1 —
8.
Su Xiaomeng. A text categorization perspective for ontolo-
gy mapping [R].
Information Science of Norwegian University of Science
and Technology, 2002.

Norway: Department of Computer and

ETRSRAREE ARG

F R4

(At
(2

R B
LEEIKFPIEAHLER, &7 210007)
5B W R AT A P | B 200235)

#F

FEE : AT AR 7 ik £ 2K R 2 et m L AR UK, AR BT AR B T — AT

[a 3 R R AR GG M AR S 5 ik, AT E AR TARE RTAEA A
FRTAHBRDRT RAER 69K A, @it xf 524 64

X OUE LS

SR XAV ET
FIIAEIIED R KA. A Viterbi

H ka2 ) P 3t MK A7, ARG R AM R AL KAt ik 7 0% S 0] BT 3t R AR A dn 3 S
AARZ ] g ek gt. LI R R A EA RIS T A AR B a4
HRIA  RAR S AR B B R VT RAEAL ;45 3L web

HESHES TP311





