Journal of Southeast University (English Edition)

Vol. 23, No. 3, pp. 394 —398

Sept. 2007 ISSN 1003—7985

Novel scheme to specify and integrate RBAC policy
based on ontology

Sun Xiaolin Lu Zhengding

Li Ruixuan

Wang Zhigang Wen Kunmei

(College of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China)

Abstract: To describe and integrate various policies applied in different domains, the definition of the family of

OntoRBAC based on the ontology of a general role-based access control (RBAC) policy is proposed, which can

support and extend the RBAC96 model. The uniform ontology-based description mechanism of secure policies is

applied in OntoRBAC, which can be used to describe different secure policies in distributed systems and

integrate policies in semantic level with upper concepts. In addition, some rules have been defined to reason

within the OntoRBAC to extend the inference algorithms in ontology, which makes the system accommodate

itself to RBAC policies better.

Key words: ontology; policy; role-based access control

Access control is concerned with permitting only
authorized users (subjects) to access services and re-
sources. Policies, which constrain the behavior of sys-
tem components, are becoming an increasingly popular
approach to access control systems of applications in
academia and industry. Policies guide the behavior of
entities within the policy domain and have been used
extensively in security, management and even network
routing. And they are often used in systems where flex-
ibility is required as agent, services and access rights
change frequently. Authorization or access control poli-
cies define the high-level rules specifying the condi-
tions under which subjects are permitted to access tar-
gets. The policy-based management has become a
promising solution for managing enterprise-wide appli-
cations and distributed systems.

Multiple approaches for policy specification have
been proposed, which is described formal policy lan-
guages that can be processed and interpreted easily and
directly by a computer. Furthermore, the heterogeneity
of security mechanisms used to implement access con-
trol still makes security management an important and
difficult task.

The RBAC model is characterized by the notion
that permissions are assigned to “roles”, and not direct-
ly to users. Users are assigned appropriate “roles” ac-
cording to their job functions, and, hence, indirectly
acquire the permissions associated with those roles.

Received 2007-05-18.

Foundation item: The National Natural Science Foundation of China
(No. 60403027) .

Biographies: Sun Xiaolin(1980—), male, graduate; Lu Zhengding(cor-
responding author), male, professor, zdlu@ hust. edu. cn.

RBAC policies are particularly well-suited for large-
scale computing systems, because they reduce the ad-
ministrative complexity of associating users with per-
missions by decoupling the following two cases: users
are authorized for roles, and permissions are assigned to
roles.

1 Related Work

1.1 RBAC model

Role-based access-control (RBAC) models show
clear advantages over traditional discretionary and
mandatory access-control models with regard to these
requirements. In particular, an RBAC approach allows
uniform representation of diverse security policies and
supports efficient access management. We develop the
ontology in the context of RBAC96, the most widely
known role-based access control model' . In fact,
RBAC96 consists of four different models, RBACO,
RBAC1, RBAC2 and RBAC3. RBACO mentions the
core model of RBAC, and RBACI1 describes the basic
model and role hierarchy, RBAC2 adds constraints to
the basic model, RBAC3 is the universal model, besides
the basic model, role hierarchy and constraints.

1.2 Policy specification language

There has been much research on various ways of
specifying policy in the last decade. We can classify
them into logic-based approaches, object-oriented ap-
proaches, XML-based approaches and ontology-based
approaches.

As logic-based languages always have well-under-
stood formalisms, they have been proved attractive for
the specification of security policy. Woo and Lam"’
proposed an authorization language based on default

Novel scheme to specify and integrate RBAC policy based on ontology 395

logic. This approach involves computing extensions of
arbitrary default theories, which is NP-complete in the
propositional case. Jajodia et al.'*' proposed a formal
language ASL based on locally stratified logic, which is
known to be decidable. However all of them are diffi-
cult to use and are not efficient to implement.

The languages above focused on how to specify
the policy. They did not consider of the integration and
inter-operation of a modern distributed environment.
The use of XML for policy expression has been devel-
oped, such as XACML (eXtensible access control
markup language) "', X-RBAC (XML role-based ac-
cess control)'”". Both XACML and X-RBAC are based
on XML, and they have had broad applications in some
enterprise environments for the straightforward extensi-
bility of XML. However, the problem with mere XML
is that its semantics are mostly implicit. It is difficult
to deal with the inter-operation at the level of seman-
tics, because the entities and relationships defined by
XML are lack of formal meaning and they require extra
manual work that can be eliminated by a richer repre-
sentation.

Semantic web-based policy representations can be
mapped to semantic level representations, which XML
cannot. Some initial efforts in the use of semantic web
representations for basic security applications (authen-
tication, access control, data integrity, encryption) of
policy have begun. KAoS'” and Rei' are semantic
policy languages represented in OWL'"' to specify se-
curity policy supporting positive and negative authori-
zation and obligation. The reasoning of KAoS policy is
based on DL (description logic), which limits the ex-
pressive power of policy, as DL does not support the
rule now. As to Rei, it does not support the model of
RBACY96 explicitly. In addition, they cannot intuitively
specify the important security principle, separation of
duty.

2 Family of OntoRBAC Ontology

Directly inspired by Rei and KAoS, we introduce
an ontology family, OntoRBAC, to define role-based
access control policies extending to the RBAC96 model
based on a set of authorization rules. This ontology also
provides specification for derived hierarchies and con-
straints, as well as allows modality authorizations.

The OntoRBAC ontology family is shown in Fig.
1. Model A is the most basic among the family. Other
models extend Model A in different ways. This model
allows the specification of concepts that can be used in
RBACO of RBAC96. Model B extends Model A to al-

low specifying hierarchies of various entities and privi-
leges. Model C extends Model A to allow constraints
specification. Modality authorizations are introduced in
Model D to describe authorization rules with different
modalities, which are seldom mentioned in the RBAC
model but useful in actual applications. In the end,
Model E is the universal ontology of the family.

Model E
Universal model

/

Model B Model C Model D
Model A + hierarch: Model A + Model A + modality +
Y constraints authorization

Model A
User, Role, Privilege, Session, Policy , Policyrule
Fig.1 The family of OntoRBAC
2.1 Model B (hierarchal model)

In Model A, some essential concepts are defined
to construct the basis of the OntoRBAC model. Model
A and all of the concepts and their relationships are
shown in Ref. [10]. So we discuss Model B here as the
beginning.

A hierarchy is mathematically a partial order defi-
ning a seniority relationship among elements. Whereas
only the role hierarchy is noted in RBAC96. The hier-
archy is widely used to define the relationships among
all kinds of elements in many access-control langua-
ges. For conveniently specifying authorization and in-
tegrating with other policy models, we introduce sever-
al properties in Model B of OntoRBAC to specify not
only the role hierarchy, but also the hierarchies among
entities, actions and privileges. This model recognizes
two types of hierarchies.

e Pure hierarchical RBAC Some systems may fo-
cus on the role hierarchy as RBAC96. Most common-
ly, role hierarchies are limited to simple structures such
as trees or inverted trees.

e General hierarchical RBAC In this case, there is
support for an arbitrary partial order to serve as the hi-
erarchy to more elements, including the concept of
multiple kinds of inheritances of privileges among au-
thorizations.

For pure hierarchical RBAC, two mutual-inverse
properties, “seniorRoleOf” and “juniorRoleOf”, are de-
fined. They are both transitive, non-reflexive and anti-
symmetric relations, used to constructure the role hier-
archy. If seniorRoleOf(r;, r;) is denoted, then r; is sen-
ior to r;. As well, juniorRoleOf (r;, r;) mentions the
junior relation between r; and r,.

For general hierarchical RBAC, we use the prop-
erty “dominate” to denote the hierarchies between

396 Sun Xiaolin, Lu Zhengding, Li Ruixuan, Wang Zhigang, and Wen Kunmei

more different elements, which range from entity and
action to privilege. From these hierarchies, more privi-
leges can be deduced by inheritance. The concept and

property added to Model B can be seen as follows:
seniorRoleOf * (role, Role) , juniorRoleOf * (Role, Role),

dominate * (Entity U Action U Privilege, Entity U Action U Privilege) , seni-

orRoleOf C dominate

2.2 Model C (constraint model)

Constraint specifies conditions over the agent,
role, action and any other context entity that must be
true at the time of the invocation. Constraints specifica-
tion is an extensively discussed issue both in general,
and within the context of RBAC in specific. We intro-
duce the constraints in Model C, which extends Model
A by allowing the specification of constraints in the au-
thorization rules using different methods. Our goal is to
provide a general method of constraints specification to
express as many kinds of constraints as possible. In
contrast, the decidability of these constraints, which
may differ from each other, will not be discussed in
this paper. There are mainly four types of specifying
constraints in RBAC.

e Separation of duty (SoD) constraints These are
the most common class of role-based constraints to pre-
vent fraud. The existence of a role hierarchy facilitates
the specification of separation of duty constraints be-
cause of its ability to model organizational structures.
More specially, SoD can be organized as SSoD (static
separation of duty) and DSoD (dynamic separation of
duty).

e Prerequisite constraints The prerequisite role is
discussed widely in ARBAC99. They are based on
competency and appropriateness, whereby a user can be
assigned to role 7, only if the user is already a member
of role r;.

o Cardinality constraints These constraints specify
the maximum number of members in a role in a static
or dynamic state. It is useful when some roles can only
be assigned to a certain number of users like a manager
of a branch in a bank, a chairman of a department, etc.
Also, this type is useful in enforcing licensing agree-
ments.

o Context constraints They are defined as dynamic
RBAC constraints that check the actual values of one
or more contextual attributes. These general attributes
rely on environment information like location, time,
process-state or access history, etc. and may change dy-
namically according to real-world.

The constraints above are all classified into Sim-
pleConstraints, for each constraint expresses one kind

of condition to be satisfied. Then CompoundConstraint
is defined to combine arbitrary constraints using boole-
an operators of And, Or and Not. Each Boolean con-
straint expression is a subclass of CompoundCon-
straint. The concept and property added to Model C can

be seen as follows:

SimpleConstraint © Constraint, CompoundConstraint C Constraint,
SoD C SimpleConstraint, SSoD C SoD, DSoD C Sod, Cardinality € Simple-
Constraint, Prerequisite C SimpleConstraint, ContextConstraint C Simple-
Constraint, NegativeConstraint € CompoundConstraint, DisjunctiveCon-
straint € CompoundConstraint, ConjunctiveConstraint & CompoundCon-
straint, hasConstraint(Entity U Privilege U PolicyRule, Constraint)

2.3 Model D (modality authorization model)

Modality authorization is rarely mentioned in
RBAC literature, mainly because RBAC models such as
RBAC96 and the proposed NIST standard model are
based on positive privileges that confer the ability to do
something on holders. While modal logic expresses
many normative notions that can be useful in policy
specification. Model D of OntoRBAC extends Model A
to allow the specification of modality authorizations.
We focus on the set of modal operators of obligation,
permission and prohibition, as defined in standard de-
ontic logic and widely accepted. These policy modes
can be described as follows:

Permission € Modality, Obligation C Permission, Prohibition = Mo-
dality N — Permission, hasMod (Privilege, Modality), rulePirior (Poli-
cyRule, int), policyPirior (Policy, int), defaultMod (Policy, Modality),
conflictedMod(Policy, Modality)

e Permission is the action of permitting an allow-
ance, a liberty or a licence granted to do something.
Permission policies are designed to give permissions to
actors to run some actions on other system objects.
They are conceptually enforced near the actor instead
of target objects to be affected by the operations the
actor performed.

e Prohibition is an unambiguous statement or rule,
regulating disallowed behaviour in a system, while a
prohibition privilege refers to a prohibition to execute
some action.

e Obligation defines what actions an actor must do
on a target object. The obligation policies do not de-
pend on permission policies.

Modality authorization is typically discussed in
the context of access control systems that adopt open
policy. There is an extensive amount of work in this re-
gard. The introduction of modality authorization im-
plies the possibility of conflict in authorization, an issue
that needs to be resolved in order for the access control
model to give a conclusive result. The types of con-
flicts brought by the modality authorization and con-
flict resolution polices are discussed in abundance out-

Novel scheme to specify and integrate RBAC policy based on ontology 397

side RBAC literature. However, it is more complicated
in the RBAC model, especially, when Model D is com-
bined to Model B and Model C.

There are many methods to resolve the modality
conflict in the RBAC literatures, such as negative/posi-
tive policy precedence, assigning explicit priorities to
policies, specific overrides general, configure meta-pol-
icy, etc. Much research has revealed that any one of the
conflict resolution methods is insufficient to resolve all
conflict types. In OntoRBAC, the priorities and meta-
policies are defined to conclude which kind of authori-
zation can be achieved when conflicts are detected.
Due to the limitation of length, the details are omitted.
2.4 Model E (universal model)

Model E is the combination of Models B, C and
D, obviously a superset of RBAC3 of RBAC96. Role
hierarchy, as well as hierarchies of entities, actions,
privileges, can be specified for Model B. Any constraint
expressions, which include SoD, cardinality, prerequi-
site and context constraints, can be asserted. More spe-
cially, modality authorizations are introduced to support
the RBAC model as in many real-world applications.
Therefore, OntoRBAC has such a powerful expressivi-
ty, that it not only can specify the policies in respect of
RBAC96, but also can express many other policies out
of range of the classic model.

3 Rule Based Specification and Integration
of Policy

A knowledge base (KB) comprises three compo-
nents, the Tbox, the Abox and the Rbox. The Tbox in-
troduces the terminology, i. e., the vocabulary of an
application domain, while the Abox contains assertions
about named individuals in terms of this vocabulary. A
set of rules are defined in the Rbox to reason with the
KB in application environments. The ontology family
above is considered as the Tbox. We can then define
any access control policy of special autonomy domain
as individuals in Abox by importing that Tbox in OWL
files.

It is convenient to integrate two or more policies
within the same ontology, OntoRBAC. For the tradi-
tional RBAC model, the integration or interoperation
means exactly the mapping between roles of different
autonomy domains. Based on OntoRBAC, there are
many methods to achieve the integration at the seman-
tic level.

According to the mechanism of the mapping, we
provide hierarchic mapping and identical mapping.

e Hierarchic mapping Assert the relationships be-

tween different parts of hierarchies in distinct policies,
so that privileges can be inherited crossing the bounda-
ry of domains.

o Identical mapping It is the classic semantic inte-
gration that makes the semantic web superior to XML
and other languages. It resolves the problem that the
same object has different identifies in different autono-
my domains. Then this object can be dealt with in both
policies.

With Tbox and Abox, all the relationships can be
caught between the concepts and individuals. However,
there are still some applications in which logic cannot
be expressed. Accordingly, we define some rules under
the RBAC model corresponding to submodels of On-
toRBAC as follows:

R, : AgentRoleAssRule(?ru) A grantee(?ru, ?u) /\ hasPrivilege(?ru, ?
p) A object(?p, ?r) —canplay(?u, 7r)

R,: RolePrivAssRule(?ru) A grantee(?ru, ?r) A hasPrivilege(?ru, ?
p) —canDo(?r, ?p)

R;: dominate(?a, ?b) A dominate(?b, ?c) —dominate(?a, ?c)

R, : seniorRoleOf(?r1, 712) —juniorRoleOf(712, ?r1)

RS: seniorRoleOf(?r1, 12) —dominate(rl, r2)

R seniorRoleOf(?a, b) A seniorRoleOf(?b, ?c) — seniorRoleOf (?
a, 7c)

R;: operation(?pl, ?a) A operation(?p2, ?a) A object(?pl, ?0) /\ ob-
ject(?7p2, 202) /\ dominate(201, ?02) —dominate(?pl, ?p2)

Ry : operation(?pl, ?al) A operation(?p2, ?a2) A object(?pl, 20) N\
object(7p2, 70) A dominate(?al, ?a2) —dominate(?pl, ?p2)

R,: canPlay(?u, ?r1) /A seniorRoleOf(?rl, ?12) —canPlay(?u, ?12)

R|y: canDo(?r1, ?p) /\ seniorRoleOf(712, ?7r1) —canPlay(712, ?p)

R, : canDo(?r, ?pl) A dominate(?pl, ?p2) —canDo(?rl, ?p2)

R, : dominate(?0, ?0) —conflict()

As shown above, R, is defined in Model A. It ex-
presses that an agent can play a role in a session, only
if there is a rule of AgentRoleAssRule, which has the
agent as the grantee, and has the privilege of activating
the role. R, is another basic rule in the RBAC model. It
defines that a role can perform an action on an object,
only if there is a rule of RolePrivAssRule, which has
the role as the grantee, and has a privilege with the ac-
tion on the object. R, to R, define the relationships
among properties of Model B. R, and R, define how to
find domination between Privileges. R, to R,, are rea-
soning with hierarchies. R, says an agent can play any
roles of the junior of the role having been assigned to
him. R,, denotes a role has all the privileges that his
junior role has. R, defines a role has all the privileges
dominated by the privilege that has been assigned to it.
Also we can define the conflict with hierarchies as R,.
“dominate” is a transitive, non-reflexive and anti-sym-
metric property. But if the hierarchy has been construc-
ted as a cycle, then it must lead to conflict. Role hierar-
chy conflict is just one kind of this conflict.

398 Sun Xiaolin, Lu Zhengding, Li Ruixuan, Wang Zhigang, and Wen Kunmei

4 Conclusion and Future Work

Our work includes the definition of family of On-
toRBAC, the ontology of a general RBAC policy, to
support the basic model, the hierarchy model, the con-
straint model and the modality authorization model.
The most obvious feature of our work different from
earlier work is that we support and extend the submod-
el of RBAC96 and the NIST RBAC model. It helps us-
ers to express their role-based access control policies
more accurately because of the powerful expressive a-
bility of OntoRBAC. As well, it provides convenient
approaches to integration different policies in semantic
level.

While in some aspect the ontology of OntoRBAC
is still domain dependent, our future researches intend
to develop a more general ontology to integrate with
other policy languages. As discussed earlier, the reason-
ing engine is also an important work under considera-
tion. The rules and reasoning are just a part of the work
to make the access control decision. There are still
many problems such as the resolution of policy conflict
and the problem of trust to be resolved especially in the
universal model of OntoRBAC. They are all on sched-
ule.

References

[1] Sandhu Ravi S, Coynek Edward J, Feinsteink Hal L, et al.
Role-based access control models [J]. IEEE Computer,
1996,29(2):38 —47.

[2] Jajodia S, Samarati P, Sapino M, et al. Flexible support for

multiple access control policies [J]. ACM Transactions on
Database Systems,2001,26(2):214 —260.

[3] Baader F, Calvanese D, McGuinness D, et al. The descrip-
tion logic handbook: theory, implementation and applica-
tions [M]. London: Cambridge University Press, 2003: 47 —
100.

[4] Jajodia S, Samarati P, Subrahmanian V S. A Logical Lan-
guage for Expressing Authorizations [C]// Proceedings of
the IEEE Symposium on Security and Privacy. Washington,
DC: IEEE Computer Society Press, 1997:31 —42.

[5] Moses T. eXtensible access control markup language
(XACML) [EB/OL]. (2003-02-18) [2007-04-20]. http: //
WWWw. oasis-open. org/committees/download. php/2406/ 0a-
sis-xacml-1. 0. pdf.

[6] Joshi J B D. Access-control language for multidomain envi-
ronments[J]. IEEE Internet Computing, 2004, 8 (6): 40 —
50.

[7] Uszok A, Bradshaw J, Jeffers R, et al. KAoS policy and do-
main services: toward a description-logic approach to policy
representation, deconfliction, and enforcement|[C]//Proc of
the 4th IEEE International Workshop on Policies for Dis-
tributed Systems and Networks. Washington, DC: IEEE
Computer Society, 2003:93 —96.

[8] Kagal L, Finin T, Joshi A. A policy language for pervasive
systems[C]// Proc of the 4th IEEE International Workshop
on Policies for Distributed Systems and Networks. Washing-
ton, DC: IEEE Computer Society, 2003:63 —71.

[9] Mike D. OWL web ontology language reference. W3C Rec-
ommendation 10 February 2004 [EB/OL]. (2004-02-10)
[2007-04-20]. http: //www. w3. org/ TR/ owl-ref/.

[10] Wang Zhigang, Wang Xiaogang, Lu Zhengding, et al. On-
toRBAC: specify and integrate RBAC policies with ontolo-
gies[J]. Computer Science, 2007, 34(2):82 —85. (in Chi-
nese)

—ME TR RBAC RS &M TT i

IR BB

FamsF EGA

A

(B P BT AU 5 5 E AR F i, KX 430074)

WE: AT EARRFHM B ERI M EE RGN R — MRS F R, ARRA RS BT —F X H
RBACI96 #7164 35 T /4 &, 37 9142 %1 K& X L] OntoRBAC. A i A4k 6938 M, 2t R B 54 & 4089
B RO AT — 468, SH AL A R AR 8 L B &G R MGE SUE R B IR R w04 52 ., IF A
A BT — B TR A AAREE R k. A T S5 1945) Bk R 69 3R 22, OntoRBAC AHL
W6 5 S A TR B, R AT Frok A F 38R T 464 5 322 R R A 76349 RBAC Rk

R AR Rk AT i &35 9132 h)
R E 535 TP301

