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Abstract: To enable the representation and reasoning for fuzzy ontologies with expressive fuzzy knowledge on

the semantic web, a new fuzzy extension of description logics called vague ALC which is based on vague sets is

presented. The definition of vague set is introduced and then the syntax and semantics of vague ALC are

formally defined. The forms of axioms and assertions in the vague ALC knowledge bases are specified. Finally,

the tableau algorithm is developed for the reasoning in the vague ALC. The vague ALC based on vague set uses

two degrees of membership instead of a single membership degree in the fuzzy sets and is more accurate in

representing the imprecision in the degrees of membership. The vague ALC has more expressive power than

ALC and can represent fuzzy knowledge and perform reasoning tasks based on them. Therefore, the vague ALC

can enable the representation and reasoning for fuzzy ontologies with expressive fuzzy knowledge on the

semantic web.
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Description logics (DLs)!" are the logical founda-
tion of the semantic web, which support knowledge
representation and reasoning based on concepts and
roles. It should be pointed out, however, that the clas-
sical DLs can only deal with crisp knowledge. In the
real world, human knowledge and natural language
have a great deal of imprecision and vagueness. As a
result, fuzzy DLs have been proposed in the literature
such as in Refs. [2 —3] as a way to represent and rea-
son with imprecise and uncertain knowledge. The basic
idea of the fuzzy DLs is that, based on Zadeh’ s fuzzy

set theory'

, the fuzzy assertions have expressions of
type (8, ). Here § is a DL assertion and « is a degree
of membership (« [0, 1]). Note, however, that a sin-
gle membership degree in the fuzzy sets is inaccurate
to represent the imprecision in the membership de-
grees. In this paper, based on vague sets'”', a fuzzy ex-
tension of description logic ALC is presented, called
vague ALC. Instead of a crisp degree of membership,
two degrees of membership (lower and upper degrees
of membership) are used in the vague ALC proposed
in this paper. Its syntax, semantics and inference prob-
lems are hereby investigated.

1 Vague Sets

Compared with fuzzy sets'”, there are some
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unique interesting features to vague sets'® for handling
vague data, and, what’ s more, vague sets have been
introduced to deal with imperfect information. Let U be
a universe of discourse, where an element of U is deno-
ted by u.

Definition 1 A vague set V in U is characterized
by a truth-membership function ¢, and a false-member-
ship function f,. Here t,, (u) is a lower bound on the
degree of membership of u derived from the evidence
for u, and f,,(u) is a lower bound on the negation of u
derived from the evidence against u. Here ¢, (u) and
fy(u) are both associated with a real number in the in-
terval [0, 1] with each element in U, where ¢, (u) +f,
(u) <1. Then

ty: U—[0,1] and f,: U—[0,1]

Suppose that U = {u,, u,, ..., u, }. A vague set V

of the universe of discourse U can be represented by
V= A{lt(u), 1 =fi(u) 1 /uy, [1y(uy),

1 =-fy(u) 1V uy, ooy [0y (uy) s 1 =fy(u,) 1/, }
where #,(u,;) <u,(u,) <1 -f,(u,), Vu, e U and 1 <i
=n.

This approach bounds the degree of membership
of u to a subinterval [#,(u),1 —f,(u)] of [0,1].In
other words, the exact degree of membership u, (u) of
u may be unknown, but is bounded by #,(u) <u,(u)
<1 -f,(u), where t,(u) +f,(u) <1. The precision of
the knowledge about u is characterized by the differ-
ence 1 -ty (u) —f,(u).If the difference is small, the
knowledge about u is relatively precise; if it is large,
we know correspondingly little. If #,,(u) is equal to 1 —
fy(u), the knowledge about u is exact, and the vague
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set reverts back to a fuzzy set. If #,(u) and 1 — £, (u)
are both equal to 1 or 0, depending on whether u does
or does not belong to V, the knowledge about u is very
exact and the vague set reverts back to an ordinary set.
For example, the fuzzy set {0.6/u} can be represented
as the vague set {[0. 6,0.6]/u}, while the ordinary set
{u} can be represented as the vague set {[1,1]/u}.

2 Vague ALC

2.1 Syntax and semantics of vague ALC

In fuzzy ALC based on the vague sets ( called
vague ALC), a concept is interpreted as a vague set.
Therefore, concepts and roles become vague. We still
have three alphabets of symbols, called primitive vague
concepts (denoted by A), primitive vague roles ( deno-
ted by R) and vague individuals ( denoted by a and
b). The vague concepts (denoted by C and D) of the
vague ALC are formed out of primitive concepts ac-
cording to the following abstract syntax:
C,D—T|1L|AlcnD|cuD|~ C[VR C| 3R C|
where T, 1, N, U, and = are used to represent top
concept, bottom concept, concept conjunction, concept
disjunction, and concept negation, respectively. The
symbols V¥V and 3 are used to represent universal
quantification and existential quantification, respective-
ly.

Now let us focus on the semantics of the vague
ALC. The semantics of the vague ALC are provided by
a vague interpretation. A vague interpretation / is a pair
I=(A",+"). Here A’ is a non-empty set of objects and
-"is a vague interpretation function. Vague interpreta-
tion function -’ can be defined as follows:

e For an individual o e A", (0)' =0';

o A:A'>[a,p], where ae[0,1] and B [0, 1];

e R':A"xA' 5[, B], where a € [0, 1] and B e [0,
1].

Here « and B are degrees of membership from the
truth-membership function ¢, and false-membership
function f,, in the vague sets, respectively. Let o, 0’
AL, C A >l ae Bel, and D': A'—>[ ayp, By]. The se-
mantics of vague ALC concepts and roles are depicted

as follows:
o (0)=[1,11;
e 1(0)=[0,0];

e (CND)'(0) =min(C'(0),D'(0)) =[min (ac,.
Qo)) s MIN(Be (1) Bp ()]

e (CUD)'(0) =max (C'(0), D'(0)) =[max
(0 )> 0p () > MAX (Be )5 Bp )]s

o (= O'(0) =[1,1]1 =C'(0) =By | —acy i

e (YR O)'(0) = min {max {[ 1, 1] - R'(0, 0",
CI(O,) }} :[{Elll}{max{]‘ _aR(a,o’)’aC(o') }}’ {pil}{max{l

_BR(O,O') uBC(o') 1

e (IR O)'(0) =r§,légl>;{min{R'(0, 0'),C'(o"}) =
[T??I( {min { oy, s acen 1 max {min { B,
:8C (0" } }] :

A vague assertion in ABox is an expression with
one of the following types:

e (C(0),[ac, Bcl), where o is an instance of C,
ac€[0,1] and B. €[0,1];

e (R (0,0"), [ oz, Bl ), where o is related to o’ by
means of R, a, €[0,1] and B, [0, 1].

An interpretation / satisfies a vague assertion
(C (0), e, Be]) if and only if a. < C'(0") <B..
Similarly, [ satisfies (R (0, 0"), [ag, Bz]) if and only
if az<R'(0',0") <pBs.

A TBox is a finite set of concept axioms. A vague
concept axiom is an expression with one of following
forms:

e (CC"D, [a, B] Y, which is called a vague inclu-
sion introduction, the symbol C * represents that C is
included in D in vague conditions;

e (C = D,[a,B]), which is called a vague equiva-
lence introduction.

As pointed out in Ref. [2], how to deal with gen-
eral fuzzy concept inclusions still remains an open
problem in fuzzy concept languages. So far, a major
theoretical and computational limitation of fuzzy DLs
has been the inability to handle general concept inclu-
sions'”!, which is an important feature of classical DLs.
For a vague CC " D, it is true that CC D holds with the
membership degree, denoted by [, 8] (a e€[0,1] and
Be[0,1]). Then an interpretation / satisfies a vague
concept axiom (CC "D, [a, 8] ) if and only if (V o
eA’) (C'(0)<D'(0)),i.e.,ar<a, and B.<f, for
any o e A’, in which « = min(e) and = r{pﬁigl(ﬁc) o
Similarly, [ satisfies (C=D, [, 8] ) if and only if (C
C*D,[a,B]) and (DC*C, [, B]).

A vague ALC knowledge base is defined as pair 3
=(T,A), where T is a vague TBox and A is a vague
ABox. An interpretation / satisfies (is a model of) a
knowledge base 3 if and only if I satisfies each ele-
ment in 3. Given a vague concept axiom or assertion
5, 3 entails §, written 3 | =~§, if and only if for all
models I of 3, I satisfies §.

2.2 Inference problems of vague ALC

Let 3=(T,A) be a vague ALC knowledge base.

Then the inference problems of the vague ALC can al-
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so be reduced to vague ABox consistency with regard
to T.If ABox has a model, we say it is consistent. We
have

e Cis a.-B -satistiable with regard to 3 if and only
if (T, {a.<C (0) <B.}) is satisfiable;

e 3| =CC "D if and only if (7, {min(ac) <C(o)

<D(o) < migl(ﬁc) })is satisfiable.

The major inference problems of the vague ALC
include concept satisfiability and ABox consistency.

3 Tableau Algorithm for Vague ALC

Many inference tasks can be reduced to the satisfi-
ability of vague ALC concepts. In fact, the satisfiability
of concepts is usually checked with tableau algorithms
that try to construct a fuzzy tableau for a fuzzy ABox
A. In this section, we will design a tableau algorithm
for the satisfiability of vague ALC concepts in the style
of tableau algorithms in Refs. [2 —3]. As pointed out
in Ref. [2], algorithms that decide consistency of an
ABox work on completion-forests rather than on com-
pletion-trees. This is because each assertion in an ABox
which has lower and upper degrees of membership will
be decomposed into four cases according to the tableau

rules: U, N, 3, V. This will be illustrated in the fol-
lowing tableau algorithm(see Tab. 1). And because the
four cases are very similar to each other, we only give
one case.

Such a forest is a collection of trees that corre-
spond to the individuals in the ABox. Nodes in the
completion-forest are labeled with a set of triples %4( 0)
(node triples) . More precisely we define £(0) = {{ =
Qe ¥ ) or { * B, e m* )}, where ac,,, is the
lower membership degree of an individual o belonging
to a concept C; B¢, is the upper membership degree
of an individual o belonging to a concept C; »« ={ =,
>, =, <, <};n me [0, 1]. Furthermore, edges (o,
o') are labeled with a set 4({o0, 0')) (edge triples)
defined as “((o0,0')) ={{ * R, sy« n* )}. The al-
gorithm expands the tree either by expanding the set
Ho0),or #({0,0")),or by adding new leaf nodes.

For the satisfiability of vague ALC concept C,
w. 1. t. an empty TBox to a given degree «, 3,, our al-
gorithm starts with an ABox A = {{ C, (0), [ ay,
Bo1)}, and we first use rule O to decompose the asser-
tion to have a result Z(0) ={{ * ac,, =an * ),  *
Beiw =By * )}, and then use all the other rules.

Tab.1 Tableau expansion rules

Rule Description
5 If{(C)(0),[ap.Bo]) €A, as the definition of vague set, we have ac (o) = a0, Beo) =Bo and if{{ * ac,) =ap * ), { * By =
Bo # ) YL A 0);sthen £(0)—0) UL * acy =as * ), {* Bey =Bo * ) ).
If ((~ O)(0),[a-.B-1) €A, as the vague interpretation I of - , we have B¢, =a- .1 —ac(, =B ithen ac,) =1 =B .Bc
- =a. ;and if {< * 0 (o) =1-p8, = >=< * Bc(a) o, >}¢— Z(0); then %(O)H%(O)U{< Qe (o) =1-B. = >’< * BC(()) =o,
%) ).
If{(CUD)(0),[ay.B,]1) €A, as the vague interpretation I of U, we have max (ac (), aps)) = ay> Max(Be ) Bp(0)) =Bus
U then * % ac(,) Sy ap ) =aysBen SBU-Bp @ =Busand if {({(* acq,y Say *), (% apyy =ay * ), {* Ba, SBy * ),
(# Bpy =By * )} LA 0)sthen L 0)—A0) U{{ * acy Say * ), (* apy =ay * ), Beo SBu * )5 (= Bpy =By
)}
If ((IR.C) (0),[a3,B85]) €A, and if 0 has no R-successor o', as the vague interpretation / of 3 : max {min {treo, 01y > Ctcory 1} =
o' eAl ’
3 asg, maj‘{min{ﬁkw.a'wﬁcm') 1) =B3:then = = ap, ) Sag Booy SBasand if {{# apyo) Sag =)} L L((o, 0")) and {( *
o'edf

Beoy <B3 * )} L Z(0"); then create a new node o', and £( {0, 0')) —L({0,0")) U{{ * ag(,,H <az * )}, L(0) > A0 U

{< * BC(()’) sﬁﬂ *>}

Note: In the above rules U and 3, we only list one kind of case, the other three cases can be obtained similarly. Furthermore, the rules N and V

can be obtained similarly according to U and 3.

For any individual o, it is said that A contains a
clash if “(0) contains one of the following:

(D Two conjugated pairs of triples, for example,
(% acy=n #),{* Beo,, <m *),and n>m;

2 One of the triples { * a, =n * ), { *ar <n
s ), withn>0,n<1, (% a, >n %), (% a; <n
#), (% agy >1 *), (% ag, <0 *),and { * B,
>n %), % Br<n %), ( * B, >1 %), ( * Beo
<0 *) etc.

@ To all the equations in .4(0), like the form

(o Qe =0 % ), e (R ac = % ), (Cx Boy =
my % ), ., (% Be,y =m; k), if max{n,...n,} <min
{m,...m;}.

Otherwise A is clash-free. If none of the tableau
expansion rules can be applied to A, then A is com-
plete. While A is clash-free and not complete, apply
completion rules to any individual o in A exhaustively.
It can yield a complete and clash-free A iff C; is a-
Bc-satisfiable to the given degree «, 3, W. 1. t. an emp-
ty TBox.
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4 Conclusion

In the real world, human knowledge and natural
language have a great deal of imprecision and uncer-
tainty. Moreover, the vague set theory is one very im-
portant theory for capturing and dealing with vague-
ness. To this extent, we have presented a fuzzy exten-
sion of description logic ALC with vague sets in this
paper. We have presented its syntax, semantics and in-
ference problems for the extended language. We also
developed an efficient algorithm for reasoning in the
vague ALC and analyzed its consistency checking. In
the near future, we will analyze the time complexity of
the developed algorithm.
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