Journal of Southeast University (English Edition)

Vol. 23, No. 3, pp. 431 -434

Sept. 2007 ISSN 1003—7985

Matching algorithm for label-based integrable-ware query

. 1
Xiao Kun

Chen Shihong"*

(ISchool of Computer, Wuhan University, Wuhan 430072, China)
(*National Multimedia Software Engineering Technology Research Center, Wuhan University, Wuhan 430072, China)

Abstract: Based on tree-inclusion matching, retrieval may be transformed into matching between the query tree
and the integrable-ware label tree. Considering the retrieval specialities of integrable-ware, three theorems of
matching are given. On this basis, the inverted-path string algorithm for the integrable-ware label tree query is
proposed. This algorithm searches from leaf nodes rather than from root nodes, and considers about the path
length and the total number of leaf nodes. It can terminate the failed matching as early as possible and avoid
spending too much time on loop comparisons in character string matching. It utilizes the dictionary suffix order
to skip much of the impossibility matching path. The experimental results show that this algorithm enhances the
recall and the precision of integrable-ware query efficiency while maintaining the searching speed of the

integrable-ware.

Key words: integrable-ware; retrieval; label; tree-inclusion matching

An integrable-ware is an educational resource
component and teaching unit reflecting knowledge-
points independently. It is easily used for different inte-
grable-ware systems. The integrable-ware system,
which is an intelligent tutor system, decomposes the
course-ware into a lot of integrable-wares, and it can
develop different teaching contents only using different
integrable-ware systems.

In the integrable-ware system, an effective query
allows users to search the requirable integrable-ware
quickly. At present, the keyword matching and the path
containment query are two major queries of integrable-
ware. However, the keyword matching little shows the
interrelation of the keywords. Thus, the recall of the
keyword-based query is lower. The speed of the path
containment query is not very quick'", because it must
match with every branch path in the integrable-ware la-
bel tree.

Based on the integrable-ware specialities, this pa-
per provides an inverted-path string algorithm. Consid-
ering this, the unordered-label tree results are given for
reference'” ' . The recall and the precision of the invert-
ed-path string query are superior in principle and ex-
periment. This paper gives the realization for the in-
verted-path algorithm.

1 Tree-Inclusion Matching

If a tree matching is successful, the structural

Received 2007-05-18.

Foundation item: The National High Technology Research and Devel-
opment Program of China (863 Program) (No.2002AA111010).
Biographies: Xiao Kun (1976—), male, graduate; Chen Shihong (cor-
responding author), male, professor, chen _ 1ei0605@ sina. com.

mapping between the query tree and the integrable-
ware label tree must satisfy the matching relationships
of the tree structures. However, in the integrable-ware
query based on XML, users usually have no idea about
the exact structures of the integrable-ware trees. In or-
der to understand the tree matching, the tree must be
first introduced.

Definition 1 An acyclic connected graph 7 is a
tree, if there is T =(V, E,root(T)). V is a limited node
set and root(7) is the root node of tree. E is an edge
set. It is the binary relationship, which satisfies the anti-
reflexive, the skew symmetric and the transitivity. If
there is (u, v) € E, u is the father node of v. It is ex-
pressed as u =parent(v) or v =child(u). A tree T must
satisfy three conditions'*™:

(D No nodes are the father of the root node;

(2 Every node except the root node has only the
father node in V;

(3 Every node except the root node has (root(V),
v) e E",and E” is the transition closure of E.

If there is (v,,v,) € E” about v, and v,, v, is the
ancestor node of v,. It is expressed as v, = ancestor(v,)
or v, =descendant(v,). A(u) is the node set of the an-
cestor nodes of u. D(u) is the node set of the descend-
ant nodes of u. If there is u e V, T[u] =(V', E', u) is
the sub-tree of T and the root node of 7| u] is u. Addi-
tionally, there are V' ={u} UD(u) and E' = EN(V' x
V') in Tl u].

If every node has a label in 7, T is called a label
tree. If the order of the brother nodes is not important
in T, T is called an unordered-label tree. The matching
of the unordered-label tree T can transform into the
mapping of the tree'”. The tree mapping is defined as

432 Xiao Kun, and Chen Shihong

follows'":

Definition 2 Tree mapping: 7, = (V,, E|,
root(T,)) and T, =(V,, E,, root(T,)) are two unorder
ed-label trees. nC T, x T, is a mapping from 7T to T,, if
(v,;» ;) € h satisfies the conditions:

Dv, = V,;6V,; =V,;. This means that the node is
the bijection in two trees.

@ v, = ancestor (v;) <, = ancestor(v,;). This
means that the relationships among the nodes are kept
in the mapping.

The domain of his {v, €T, | v, e T,, (v,,v,) e h}
CT,,and the range of his {v, e T, | v, e T}, (v, v,)
eh}CT,.

Definition 3 Tree-inclusion matching'™*: T, =
(V,,E ,root(T,)) and T, =(V,, E,, root(T,)) are two
unordered-label trees. The mapping f: V, —V, is the
tree-inclusion matching from 7, to 7,, if f satisfies the
following four conditions:

D If there are Yv, e V, and Jv, e V,, there is v,
=f(v,);

@) There are Yu,v eV, and u = v, if and only if
there are f(u) =f(v) and f(v), f(u) e V,;

3 There is label(v) =label(f(v));

@) If there is u = ancestor(v), if and only if there
is f{u) =ancestor(f(v)).

T, is the query tree and 7, is the integrable-ware
label tree (see Fig.1).

Fig.1 Tree-inclusion matching

The tree-inclusion matching only requires maintai-
ning the ancestor-descendout relationships among the
nodes. It can effectively protect the discrepancies a-
mong the label items, and enhance the precision and
the recall of the integrable-ware.

2 Speciality of Integrable-Ware Label Tree

2.1 Label of integrable-ware

The labelled items are divided into “function” and
“depiction” in the integrable-ware. The labelled items
are also called label items or sub-label items. The con-
tents of an item is called the label value. The “func-
tion” describes what aspects the integrable-ware is used
for. The “depiction” describes some expanding integra-
ble-ware information. The “triangle proof” integrable-
ware is described as follows:

(interware)
{ function)
(course) maths{/course)
(knowledge)
(name) triangle{ /name)
(way) proof(/way)
(/knowledge)
(/function)
(depiction)
(author) zhang{ /author)
(author) 1i{/author)
(medium) picture(/medium)
(/depiction)

(/interware)

For an integrable-ware, the labelled items map in-
to the father nodes and child nodes in the tree, and the
label values map into the leaf nodes. Relying on this
method, an integrable-ware label tree is built. Fig.2 is
the integrable-ware label tree of the above description.
Some label values of the nodes are abbreviations. For
example, F means “function”, and C means “course”,
etc. The retrieval conditions of the integrable-ware can

be transformed into the query tree similarly.

. Maths Zhang Li
Triangle Proof

Fig.2 Integrable-ware label tree

Picture

2.2 Theorem of tree-inclusion matching

Theorem 1 The nodes matching with the leaf
nodes of the query tree must be the leaf nodes of the
integrable-ware tree.

According to the building process of the tree, the
label values only occur on the leaf nodes.

Theorem 2 For one successful path matching,
the path length from root node to leaf node in the que-
ry tree is shorter than that in the integrable-ware tree.

The path length from root node to leaf node v, in
T, is m, and the path length from root node to leaf node
v, in T, is n. And, there is v, =f(v,). We assume m >
n.

Relying on definition 2, the ancestor nodes of v,
are greater than those of v,, and there is A(v,) =m >A
(v,) =n.

According to the conditions (1) and (@) of the defi-
nition 3, there is A(v,) = {f(v,,),f(viy)s s V1) oo}
=m, in other words, n=m.

It conflicts with the assumption m > n.

Matching algorithm for label-based integrable-ware query 433

Theorem 3 For one successful tree matching,
the total of leaf nodes in the query tree is less than that
in the integrable-ware tree.

From theorem 1, the nodes matching with the leaf
nodes of the query tree are only the leaf nodes of the
integrable-ware tree. If the number of leaf nodes in the
query tree are greater than those in the integrable-ware
tree, the matching must fail because some leaf nodes in
the query tree will not match with those in the integra-
ble-ware tree.

The multi-path query of the semi-structure is
equal to the tree-inclusion matching', and the tree
may be expressed as the encoded character string'”.
Thus, the multi-path query of XML is equal to the
matching of the character string'®'. The character string
matching avoids the decomposition of the query ex-
pression and enhances the efficiency of the XML que-

ry.
3 Inverted-Path Query

Considering theorem 1, theorem 2 and theorem 3,
we present the inverted-path string algorithm. It in-
cludes two steps. First, we build an inverted-path string
sequence for all integrable-wares in the base. Second-
ly, a matching between the inverted-path string of the
integrable-ware base and those of the query are execu-
ted. If it satisfies the tree-inclusion matching, it will be
successful.

3.1 Inverted-path algorithm

“#7, “-” and “;” are three special characters
which are not used in the integrable-ware label trees
and the query tree. “#” is used to split the integrable-
ware in the integrable-ware base; “;” is used to split
the paths in the integrable-ware label tree (query tree),
and “-” is used to split the labels in the path.

Algorithm 1 Build the inverted-path string of

the tree

Input: integrable-ware label tree (query tree) 7.

Output: the character string S.

®Ss=;

(2) Building the character strings paths from root node to leaf nodes
for T, recording the total number of the paths in 7, the path lengths, and
the total number of paths in any given path length;

(® Reversing the character strings of every path;

@ Sorting the character strings based on the path lengths;

(® For the same path length, sorting the character strings based on
the dictionary suffix order;

(© Joining the character strings into a long character string S with

.
5.

S is an inverted-path string for 7. The character
strings splitted ““;” are called the sub-strings of S. The
character strings splitted “-” are called the tags of the
sub-strings.

Fig. 3 is the inverted-path string of an integrable-

ware tree, where the inverted-path is C-B-A; D-B-A;
E-A;F-A. The string “4;2;3; C-B-A; D-B-A;2;2; E-
A; F-A;” is the inverted-path string of the integrable-

ware.

Fig.3 Inverted-path of integrable-ware tree

Algorithm 2 Build the inverted-path string for

the integrable-ware base

Input: integrable-ware base D.

Output: inverted-path string SD.

@® S =

(2 For the integrable-ware tree T in D;

(® Building the character string S for 7 based on algorithm 1;

(@) Appending “#” into S, and inserting S into SD relying on the total
number of the paths of 7 and the dictionary suffix order;

(5 End for.

SD is the inverted-path string for the integrable-
ware base
Algorithm 3 Match the inverted-path string be-

tween the query tree and the integrable-ware tree

Input: inverted-path string Q for query tree; inverted-path string S for
integrable-ware label tree.

Output: If the matching succeeds, returned value is true. Otherwise,
returned value is false.

Q; is the i-th sub-string in Q and §; is the j-th sub-string in S. Oy is
the total number of sub-strings waiting for matching in Q. S, is the total
number of sub-strings, which are to be matched in S.

@ If Q, is much more than S,, the algorithm finishes and the re-
turned value is false.

@ If the path length of Q; is longer than that of §;, the algorithm
finishes and the returned value is false.

(3 If the first tag of Q; is less than that of S ; according to the dic-
tionary suffix order, we skip the rest of the sub-strings with the same path
length in S and return to (D.

@ If the matching between Q; and S ; i successful and there are sub-
strings still waiting for matching in Q , we return to (D.

(5 The algorithm finishes and the returned value is true.

Algorithm 4 Search for integrable-ware in the

base

Input: inverted-path string Q for query tree; inverted-path string S for
integrable-ware label tree; inverted-path string SD for integrable-ware
base.

Output: integrable-ware set R satisfying query and R = ().

(D While SD#(;

@ If the total number of the sub-strings in Q is much more than
those of S, the loop terminates and the algorithm finishes;

®If algorithm 3 returns true, there is R = RU {S}; otherwise, we re-
turn to (D);

(@) End while.

3.2 Algorithm analysis
We often spend much time on the loop compari-
son in character string matching. The inverted-path

434 Xiao Kun, and Chen Shihong

string algorithm makes the specialties of the integrable-
ware label tree terminate the failed matching as early as
possible. It searches from leaf nodes rather than from
root nodes, and considers the path lengths. It utilizes
dictionary suffix order to skip much of the impossibili-
ty matching path. It only requests the consistency of the
precedence relation between the query string and the
data strings, and enhances the recall.
3.3 Experimental results

In order to verify the effectiveness of the inverted-
path string algorithm, we experiment in the integrable-
ware base. The query results include the entire and ap-
proach matching integrable-ware. The recall of the in-
verted-path string algorithm is 0. 97 and the precision is
0. 94.

4 Conclusion

Based on the integrable-ware label tree specialties
analysis, this paper presents the inverted-path string al-
gorithm. The inverted-path string algorithm can termi-
nate the failed matching as early as possible. At pres-
ent, it is being used in practical intelligent tutor sys-
tems. Of course, it may be used in associated realm.

References

[1] Jia Xiaohui, Chen Dehua, Yan Mei, et al. Research on
matching model and algorithm for faceted-based software

component query [J]. Journal of Computer Research and
Development, 2004, 41(10) : 1634 — 1638. (in Chinese)

[2] Dennis Shasha, Jason T L. ATreeGrep: approximate search-
ing in unordered trees[C]//Proc of the 14th International
Conference on Scientific and Statistical Database Manage-
ment (SSDBM’02). Edinburgh, Scotland, 2002: 89 —98.

[3] Xu Ruzhi, Qian Legiu, Chen Jianping, et al. Research on
matching algorithm for XML-based software component
query[J]. Journal of Software, 2003, 14(7): 1195 — 1202.
(in Chinese)

[4] Wang Yuanfeng, Xue Yunjiao, Zhang Yong, et al. A
matching model for software component classified in face-
ted scheme [J]. Journal of Software, 2003, 14 (3): 401 —
408. (in Chinese)

[5] Cooper B, Sample N, Franklin M, et al. A fast index for
semi-structured data[C]//Proc of the 27th International
Conference on VLDB. Roma, Italy, 2001: 341 —350.

[6] Kilpelainen Pekka. Tree matching problems with applica-
tions to structured text databases[D]. Helsinki, Finland:
Department of Computer Science of University of Helsin-
ki, 1992.

[7] Chen M S, Yu P S, Wu K L. Optimization of parallel exe-
cution for multi-join queries[J]. Knowledge and Data En-
gineering, 1996, 8(3) : 416 —428.

[8] Shasha Dennis, Wang Jason T L, Giugno Rosalba. Algorith-
mics and applications of tree and graph searching[C]//
Proc of the 21st ACM SIGMOD-SIGACT-SIGART Symposi-
um on Principles of Database Systems. Madison, WI,
USA, 2002: 39 —52.

ETiEN—MREERRESE

A

a2

(" KK AR, K 430072)
C XK FER BB TRARFR T o, KX 430072)

FE L T 05 KA AR de ARk 69 & 18 3540 o B 0wt 55 R AR iR AR 20 9] 09 IE B, 38 T AT 50 AR
B e B B AR AR AR T AL 3 AR IR, b ah b 32 AR & 4 0 18 94 45 SR AT 9 IT AL ik
A EMT T BT AT IR B A R, B B S R T SRR BB R R E X A, BT R AR T
e R Ty 0 36 4% 38E 5, T FAT B PRI R E B AR, R B A B B — AR KR T F4F B 4 F 33k 5, skl K

B Rk 1T B A FE 42,
Ffod g £

K A B AR E R A TR
FE 43S TP311

RIGERE, U F R ERFAFERREOTRT, RAXR SN EL

