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Abstract: In allusion to the disadvantage of having to obtain the number of clusters of data sets in advance and

the sensitivity to selecting initial clustering centers in the k-means algorithm, an improved k-means clustering

algorithm is proposed. First, the concept of a silhouette coefficient is introduced, and the optimal clustering

number K, of a data set with unknown class information is confirmed by calculating the silhouette coefficient

of objects in clusters under different K values. Then the distribution of the data set is obtained through

hierarchical clustering and the initial clustering-centers are confirmed. Finally, the clustering is completed by the

traditional k-means clustering. By the theoretical analysis, it is proved that the improved k-means clustering

algorithm has proper computational complexity. The experimental results of IRIS testing data set show that the

algorithm can distinguish different clusters reasonably and recognize the outliers efficiently, and the entropy

generated by the algorithm is lower.
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As an important research branch of data mining,
cluster analysis aims to divide data objects into groups
based on their attributes and relations. And the objects
have high similarity to one another within the same
groups and have high dissimilarity to the objects in
other groups''.

The most well-known and commonly used cluste-
ring algorithms are k-means, k-medoids and their varia-
tions. The computational complexity of the k-means al-
gorithm is low and the k-means algorithm may only
find local optimum rather than the global'”'. Consider-
ing the innate limitation of the k-means method, this
paper proposes an improved k-means method. The im-
proved method can not only effectively decide appro-
priate number of clusters, but also properly select initial
points for k-means. In addition, the improved k-means
algorithm has good clustering results.

1 Criteria of Clustering

1.1 Entropy

Entropy depicts the dispersal of objects belonging
to the same class being merged into different clusters.
According to the distribution of classes, we can calcu-
late the entropy of each cluster by
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where p; = 7’ is the probability of objects of class j
belonging to cluster i; m; is the number of objects in
cluster i; m; is the number of objects of class j in clus-
ter i; and L is the number of classes. The total entropy
of clusters is the weighted sum of each cluster’ s entro-

py, and is calculated by
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where k is the number of clusters, and m is the number
of objects in the data set.
1.2 Overall similarity
A good result of clustering should show dense and

independent traits. Therefore, overall similarity adopts
inner cohesion of clusters to estimate the quality of
clustering, and is defined by

Y dist(x, c;)

xeC;

similarity, = — (3)

where C; denotes cluster i, x is one object in C;; ¢; is
the centroid of c;; dist(x, ¢;) is the distance between x
and c;; m, is the number of objects in cluster i.

Just as entropy, the total overall similarity can be

calculated by the weighted sum of each cluster, name-
ly,

o Som
similarity = Z:f Emmllarltyi (4)
1.3 Silhouette coefficient
The silhouette coefficient is a function that meas-

ures the similarity of an object with objects of their
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clusters compared to the objects of other clusters. For
object i, the value of the silhouette coefficient is de-
fined by'"

—a

bi i
®))

silhouette, = m
where a; is the mean of the distance between the object
i and the objects of their clusters, and b, is the mini-
mum of the average distance between the object i and

the objects in other clusters.
2 Improved k-Means Clustering Algorithm

2.1 Description and process of algorithm

The improved k-means clustering algorithm intro-
duces the concept of the silhouette coefficient first, and
computes the mean silhouette coefficient of all the
clusters to obtain the optimal number of clusters K.
The k-means algorithm can trust in the results of the
hierarchical algorithm completely. Instead of restarting
k-means based on the initial information provided by
the hierarchical algorithm, we just accomplish k-means
based on the hierarchical algorithm. We set a threshold
for k-means. If the distance between a certain object
and the centroids of all the clusters exceeds the thresh-
old, we consider this object to be an outlier; otherwise,
we merge this object into the closest cluster and update
the centroid of the cluster dynamically.

The process of the improved k-means algorithm is
depicted as follows:

(D Classify the original data set first, and calculate
the silhouette coefficients respectively based on differ-
ent K values. Then choose the K value corresponding to
the maximum of the silhouette coefficient as the opti-
mal cluster number K.

) Repeat.

(3 Choose two clusters (objects) with the closest
distance and merge them into a new cluster.

(@ Calculate the mean value of two clusters ( ob-
jects) as the centroid of the new cluster.

(® Until remaining K, + REAR clusters in a data

opt
set.

® Repeat.

(D Calculate each cluster’ s overall similarity ac-
cording to Eq. (3).

Choose the cluster corresponding to minimal
overall similarity. Then distribute objects in this cluster
to other clusters which have the closest distance to ob-
jects, and update the centroid of clusters dynamically.

©) Until remaining K, clusters in data set.

(0 Repeat.

@ Choose each object in the data set in turn.

(2 If the object is already merged into K, clusters
in step (9), then this object remains in the original clus-
ter.

13 Else calculate the distances between this object
and the centroids of existing K clusters.

(9 If the distances exceed the threshold set by the
user, then this object is considered as an outlier.

@5 Else merge this object into the cluster with the
closest distance and update the centroid of the cluster.

Until no object changes in the whole data set.

The improved k-means clustering algorithm refers
to two parameters: REAR and E . If we directly obtain
K, clusters in step &), this will cause several centroids
of clusters to be scattered, so we terminate hierarchical
» + REAR clusters. The
value of REAR is set according to the percentage of hi-
erarchical clustering. The goal of threshold E is to
recognize few outliers in the data set accurately.

clustering until remaining K,

2.2 Analysis of computational complexity of algo-
rithm

The improved k-means clustering algorithm can be
partitioned into three phases: Step (1 finds the optimal
number of clusters K, ; steps 2 to (9 adopt the ag-
glomerate algorithm to produce initial information for
k-means; steps (10 to 16 adopt k-means to accomplish a
cluster. In the first phase, we need to calculate the sil-
houette coefficient repeatedly to obtain K,,. So the
computational complexity of this step is O([I x n),
where [ represents the times of calculating the silhou-

ette coefficient and is not more than n [5]. In the sec-
ond phase, the computational complexity of hierarchical
clustering is mainly focused on steps @ to (3. And
steps (3 to @ need to be executed n — (K + REAR)
times repeatedly. Given certain iteration, step (3) needs
to spend O((n —i + 1)) on searching for the proximi-
ty matrix, and step (4) needs to spend O(n —i +1) on
updating the proximity matrix. And the computational
complexity of k-means in the third phase does not ex-
ceed O(n?). Therefore, the whole computational com-
plexity of the improved k-means clustering algorithm is
o((n-0) nz). If the proximity matrix is stored in an
ordinal linked list, the expense of searching for the
proximity matrix in step (3) can be reduced to O(n —i
+1). Considering the additional expense for maintain-
ing the structure of the ordinal linked list, the final
computational complexity of this algorithm is O((n -
C) nlogn), where C = K, + REAR. Obviously, the
computational complexity of the improved k-means
clustering algorithm is lower than the hierarchical clus-
tering algorithm O(n’logn).
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3 Experimental Results and Analysis

3.1 Calculation of cluster number K,

Given that two-dimensional testing data set in-
cludes 600 objects (as shown in Fig. 1), we can obtain
the proper number of clusters in a data set by calculat-
ing silhouette coefficient of the whole objects. In order
to implement this easily, we calculate the silhouette co-
efficient of the centroid of each cluster instead of all of
the objects in the cluster. We can, thus, obtain the
mean silhouette coefficient of all the clusters according

k
to formula (5), and use silhouette (k) = %Z
i=1

silhouette, to obtain the silhouette coefficient of the
whole data set. Fig. 2 shows an example of silhouette
coefficient with allusion to different K values.
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Fig.1 Distribution of two-dimensional testing data set

Fig.2 The mean silhouette coefficient for different num-
bers of clusters
As shown in Fig.2, when K =4, the mean silhou-
ette value 0. 764 0 is the greatest. So we can conclude
that this data set may consist of four clusters with the
most possibility. At the same time, the chart has an ob-
vious inflexion when K = 8. That is because the dis-
tance between the centroid of the cluster and the ob-
jects in other clusters is reduced rapidly, once splitting
each physical cluster into two parts.
3.2 Experimental results
In this experiment, we choose the IRIS data set
which is used specially to test clustering algorithms
popularly'®”. And we compare the results of the im-
proved k-means clustering with the traditional k-means
clustering. Considering that it is a fact that IRIS con-

sists of three classes of objects: Setosa, Versicolour and
Virginica, so the improved k-means clustering algo-
rithm executes directly from step ).

In order to observe the effects of clustering dis-
tinctly, we choose the two most sensible attributes ( pet-
al length and petal width) from IRIS attributes and
place them into the two-dimensional coordinate sys-
tem. Then we adopt traditional and improved k-means
algorithms to accomplish clustering respectively. In or-
der to diminish the fluctuation of clustering results
caused by the algorithm, we choose the best result from
10 different results generated by k-means. The im-
proved k-means clustering algorithm just executes
once. And we terminate hierarchical clustering at
around 40% to 60% . In this experiment, we set 7 as
REAR value, and 1. 0 cm as our threshold. As shown in
Tab. 1, we can contrast the entropy of clusters genera-
ted by different algorithms to compare their perform-
ances.

Tab.1 The entropy of clusters generated
by different algorithms

. Entropy
Algorithm -
Cluster 1 Cluster 2 Cluster 3 Weighted sum
k-means 0 0.5917 0.2668 0.3012
Improved k-means 0 0.3228 0.2539 0.1893

As shown in Fig. 3, the efforts generated by the
improved k-means are obviously better than those gen-
erated by the traditional. This is because the initial cen-
ters are selected at random in the traditional k-means,

but the improved k-means selects the initial centers de-
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Fig.3 The clusters generated by different clustering algo-

rithms. (a) Clusters generated by k-means; (b) Clusters generated
by improved k-means
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pending on the distribution of data sets. Moreover, this
algorithm can identify outliers effectively. Therefore,
the results generated by the improved k-means cluste-
ring algorithm avoid the local optimum to ensure high
stability.

4 Conclusion

After analyzing the drawbacks of k-means, this
paper proposes an improved k-means algorithm. This
algorithm conquers the diversity of result clusters, and
optimizes the quality of clustering. Finally, this paper
validates the efficiency of the algorithm by testing ca-
ses. When one object cannot be dispatched to a single
cluster, we need to distribute the object to several clus-
ters based on different possibilities.
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