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Abstract: To overcome the limitation that complex data types with noun attributes cannot be processed by rank

learning algorithms, a new rank learning algorithm is designed. In the learning algorithm based on the decision

tree, the splitting rule of the decision tree is revised with a new definition of rank impurity. A new rank learning

algorithm, which can be intuitively explained, is obtained and its theoretical basis is provided. The experimental

results show that in the aspect of average rank loss, the ranking tree algorithm outperforms perception ranking

and ordinal regression algorithms and it also has a faster convergence speed. The rank learning algorithm based

on the decision tree is able to process categorical data and select relative features.

Key words: machine learning; rank learning algorithm; decision tree; splitting rule

Recently, the ranking problem has become an im-
portant research topic in the field of machine learning.
In the task of ranking, the goal is to assign a rank to an
instance, which is as close as possible to the instance’ s
true rank. It is pointed out that rank learning is impor-
tant in our daily lives'", and it is indigenously diffi-
cult. Because of the similarity between ranking and
classification, and the similarity between ranking and
regression, naturally, researchers on machine learning
want to convert rank learning problems to classification
problems or regression problems. In the conversion to
regression, it is very difficult to decide the real number
substitute of an order because the learned rule is too
sensitive to the real number representation of the order.
In the conversion to classification, the ordering of the
classes would be lost if the problem were dealt with as
a simple classification problem.

All the algorithms in Refs. [1 —3] cannot process
complex data types with noun attributes, and they need
a kernel mapping to map samples to attribute space
when the data is linearly inseparable. Just like most
kernel methods that are indigenously difficult, it is very
difficult to select a good kernel mapping because the
result is affected enormously by the kernel function.
Ref. [4] focused on rank learning processing using the
available tools of machine learning.

This paper presents a rank learning algorithm
based on the decision tree'” to overcome this difficul-
ty. The decision tree is a very useful tool in machine
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learning and data mining. It brings us great accuracy
and at the same time makes it easy to interpret the
rules. It can accept continuous, discrete and noun attrib-
utes, and is robust in transforming data monotonically.
It smartly avoids nonlinear problems by separating the
original attribute space. Currently available decision
tree methods can only solve classification problems and
regression problems, so how to process rank learning
using the decision tree becomes a problem. In this pa-
per, we present an algorithm to compute the impurity
level of a class in a set and revise the branching rule of
a decision tree. As a result, the impurity level of the
set and the difference of the middle classes in the set
have been reduced with the increment in the number of
levels of the tree. Thus, we acquire a decision tree al-
gorithm which can be applied to ranking.

1 Rank Learning Based on Decision Tree

In this section, we present an impurity for rank
learning, it can be easily applied to various decision
tree learning algorithms.

1.1 Rank impurity

Gini impurity is very suitable for classification
learning, but for rank learning, it is not suitable because
of the order relations among class labels. Here, we de-
fine a new impurity.

Definition 1 Given a sample set 7 in which the
label of every element is selected from a totally ordered
set L={L,,...,L,),let N(T) =N(L, | T) represent the
number of elements in the set 7" which belongs to rank
L,, then rank impurity is defined as

LD = ¥ Y (G =ON(DND (1)
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Class impurity can be interpreted as the class dis-
order of a set. Suppose that element a, e T belongs to
class L, and another element a, € T belongs to class
L,. If these two elements are in the same set, then they
cause a disorder. The more different the classes, the
greater the disorder level. The disorder of one element
in the set can be acquired by summing up the disorders
caused by this element and all other elements. The
rank impurity of set 7 can then be acquired by sum-
ming up the disorders of all the elements.

Having the definition of the class disorder level,
the branching rule of the decision tree is to select a
separation from all the possible separations to maxi-
mize

maxAl =1, (T) 1Ly (T) ~1 (T (2)

Eq. (2) can be interpreted as searching a separa-
tion to minimize the sum of impurity of the left child
set 7, and that of the right child set Ty.

1.2 Theoretical proof

This section presents some theoretical bases of
rank impurity (1), through these theoretical proofs one
can see how to guide the decision tree to finish ranking
learning.

Theorem 1 is given in order to prove that the gen-
erated decision tree is not degenerated following the
branching rule in Eq. (2), that is, for every separation
Al is nonnegative.

Theorem 1 A/ in Eq. (2) is nonnegative, Al is
zero if and only if the impurity level of set T is zero
before separation.

Proof Since N,(T) =N,(L,) +N,(Ly),

k j

Irank(’T) = z 2(] —l)NI(T)NI(T) =

3 Y G —D(N(L) +N(L))(N(L) +

j=1i=1

N(LY) = |

]V/( TR)NI( TR)) = Irunk( TL) + Irank( TR)
Therefore, Al is nonnegative, as long as the impurity

> > (G =DN(T)N(T) +

i=1

level of the set is not zero before separation, the sepa-
ration process will go on until the elements in every set
have the same class.

Lemma 1 Let A, =(a;),,,, with a; =a;#0, a;
=0,i,je{1,2, ..., k}, then det(A,) #0 (det(A,) is
the determinant of A,).

Proof Let A, ={a,, a,,
{ay, ays .., a(i—l)i}T'

Proof by the mathematical induction: when i =2
det(A,) = —a,a, #0, suppose that det(A;) #0, then

ey} and A =

det(A,,,) =det(A,)det(a,,, ., —A,A;'A;) (3)
Because a;,, ., =0,4, =A],. With Eq.(3) and A, =
A[,, we have

det(A;,,) = - (A,A'A,)det(A)) (4)
Because det(A;) #0, det(A, ') #0. A" is a real sym-
metric matrix. Apply SVD decomposition on A, ', A,
=U"AU, provided U is a unitary matrix, A is a diago-
nal matrix with real-numbered diagonal elements. With
A[l =U"AU, we have

AilAi_lAli = (A%UAH)T(A%UAH) (5)

It is easy to see A%UAI,#O; therefore, det(A;,,)
#0. So det(A,) #0.

Theorem 2 Given a sample set 7, with the label
of every element selected from a totally ordered set L
={L,, ..., L), let N(T) =N(L, | T) represent the
number of samples with rank label L, in the set T; s re-
presents one separation; 7; represents the set of left
node after separation; T, represents the set of right
node after separation. If N,(T) =N,(T) =... =N, (T)
=w, and samples can go freely to left node or right
node, then the best separation is

maxAI(T, s) =1, (T) =1, (T,) =1, (Ty) (6)
and its maximum value can be reached under the fol-
lowing conditions ( without losing generality, supposing

N,(T,) #0):
When the number of ranks is even,
N(T,) =Ny(T,) =...=Nx(T)) =
Nt (T)) =Ni o(Ty) =... =N,(T}) =0
Ni(Ty) =Ny(Ty) =... =N&(Ty) =0
Ni (Ty) =Niy(Ty) = ... =N(Tp) =
When the number of classes is odd,

Ni(T)) =Ny(T}) =... =Ne2i(T)) =w
Nizt (Ty) =Nzt o (Ty) =... =N (Ty) =0
Ni(Ty) =Ny(Ty) =... =Nez1(Ty) =0
Nest, (Tg) =Nest o(T) = ... =N(Ty) =o

Proof From Eq. (1),

LD = ¥ Y (G =ON(DND — (7)

Irank(TL) = Z Z(} _i)]Vj(TL)N[(TL) (8)

]rank(TR) = Z Z(] _i)]vj(TR)Ni(TR) 9
Because N, (T) =N,(T) =... =N, (T) = w, and

N,(L) +N,(Ly) =w (Vie{l,2,...,k}).

Therefore, suppose for any i, N,(7T,) = x;, then
N,(Ty) =w —x;, 0 <x;, <w. Substituting Eqgs. (7), (8)
and (9) into Eq. (2), we obtain
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AI(T,s) =- 2 Y (- D (2xx; - ox; - wx)

i=1

Osx<w (10)
This is a continuous quadratic function in a closed
interval, so its extreme point can only be seen on the
boundary or is a singular point. The Hessian matrix H
of function AI(T, s) satisfies the form of lemma 1.
Based on lemma 1, det(H) #0 and tr(H) =0, so H
must have positive and negative eigenvalues, so it is an
indefinite matrix, and, therefore, it is impossible that
the singular point is an extreme point. Eq. (10) obtains
its extreme point on the boundary. After adding a
boundary condition x; =0 to Eq. (10), the new form of
the function also satisfies the conditions of lemma 1.
By repeating this process we can obtain the peaks of
the extreme points in the domain. The number of peaks
is limited, so the maximum can be found. From theo-
rem 2 we see that if the number of samples of every
rank in the set is the same, every step makes the sam-

ples of closer ranks even closer.

2 Experimental Results and Discussion

We use the same simulated data as in Ref. [2] to
test the algorithm. In the experiment, the CART deci-
sion tree algorithm is used, with a different separation
rule, namely, Eq. (2) that we have proposed.

First, some random points are generated evenly in
a unit square[0, 1] x [0, 1], then follow the following
rules: y :m'ax{r: 10(x, =0.5)(x, —=0.5) +&>b,},b =

{—0, -1, -0.1, =0.25,1}, £ obeys the normal dis-
tribution with average O and variance 0. 125, every
sample point is assigned a class label. The same as in
Ref. [2], we do a Monte-Carlo sample collection 20
times, every time using 50 000 samples to train and
1 000 samples to test.

For comparison, we use the same evaluation
standard as that of Ref. [2]. The average class devia-

m

tion loss is — Y |y -y, |, where m is the number of
m =

test samples. Likewise, we present CART’ s result re-
garding the gini impurity level. We use cross testing to
choose the depth of the tree. Tab. 1 shows the results of
our algorithm, CART’ s results, and the results in Ref.
[2].

Tab. 1 lists the results of every algorithm on the
test set of simulated data, using average class deviation

loss #Z{ \;;t —y,| . The 95% confidence interval of

the loss has been presented with a student ¢ distribu-

tion. As shown in Ref. [2], OAP-VP represents online
aggregate prank-voted perception; OAP-Bagg repre-
sents online aggregate prank-bagging; OAP-BPM re-
presents online aggregate prank-bayes point machine;
is the parameter; RT represents our ranking tree; CT
represents classification tree; Prank-VP represents
prank with voted perception; and WH represents the
Widrow-Hoff algorithm.

Tab.1 Algorithms comparison

Algorithm Rank loss
WH with 5 =0. 1 0.30 +0.02
Prank 0.37 £0.07
Prank-VP 0.31 +0.00
OAP-VP with 7 =0.3 0.32 £0.01
OAP-VP with 7 =0.6 0.31 +0.02
OAP-VP with 7 =0.9 0.32 +£0.03
OAP-BPM with 7 =0.3 0.22 +0.01
OAP-BPM with 7 =0. 6 0.24 +0.03
OAP-BPM with 7 =0.9 0.25+0.03
OAP-Bagg with 7 =0.3 0.34 £0.01
OAP-Bagg with 7 =0.6 0.32 +0.02
OAP-Bagg with 7 =0.9 0.33+0.03
RT(Depth =9) 0.17 £0.01
CT(Depth =9) 0.18 +0.01

The results in Tab. 1 show that our sorting tree al-
gorithm is the most effective on the test set. The results
by the kernel mapping algorithm are not so good main-
ly because it is a difficult matter to choose a good ker-
nel mapping.

For comparison, we also use the realistic data in
Ref. [2] to test the algorithm. The data includes two
cooperative filtering data sets: Cystic fibrosis'® and
MovieLens'” . Every piece of the original data consists
of three items: query, test, and class. The original data
is processed as follows: for every piece of data, a rank
is randomly selected from the ranks labeled as rank y;,
and the rest of the ranks as eigenvector x;, to form a
sample. The performance of the algorithm is measured
by the average of 500 Monte-Carlo sample collections.

It can be seen from the experimental results that
on the cystic fibrosis data set, obviously the ranking
tree algorithm is better than the rest of algorithms, in-
cluding the classification algorithm. All the algorithms
using kernel mapping give poor results.

The tree classifier is a natural attribute selection
method; usually a decision tree uses only a very small
part of the attributes to make decisions, so there is a
huge difference between the model space of a decision
tree and that of the kernel algorithm. We can see from
the experiments that the results of the decision tree al-
gorithm are much better than those of the kernel algo-
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rithm on many real ranking problems.
3 Conclusion

The effective rank learning algorithm based on the
decision tree is presented, according to the new defini-
tion of class impurity in this paper. The advantage of
the algorithm is proved both in theory and in experi-
ments.

We compared the results to the data provided in
Ref. [2]. The results indicate that the ranking tree al-
gorithm is obviously better than the other algorithms in
Ref. [2]. In order to show the differences between clas-
sification and ranking, we tested the ranking tree and
the classification tree respectively. The results indicate
that the ranking tree is much more robust than the clas-
sification tree and has a faster convergence speed.

A decision tree has many advantages in practice.
It can process continuous, discrete and noun attributes;
it can process data with part of the attributes missing;
it can make decisions using only part of the attributes.
By applying a new separation rule, our decision tree
has kept the above advantages and can be applied to

real ranking tasks.
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