Journal of Southeast University (English Edition)

Vol. 23, No. 3, pp. 474 - 478

Sept. 2007 ISSN 1003—7985

Dynamic hierarchy description and constraint rules
of flexibility workflow

Yang Fei

Yin Baolin

(School of Computer Science and Technology, Beihang University, Beijing 100083, China)

Abstract: A dynamic hierarchical description method for workflow is presented. The method provides a dynamic

hierarchical way to define a workflow with non-determinate or dynamic factors. With this method, the main

process defined at build-time can be reified and extended by the principle of the sub-organizations at either the

build-time or the run-time. To ensure the consistency and integrity of the description, a series of constraint rules

are also discussed to realize seamless integration between a decomposed process and its original one. This

approach supports the description of unpredictable uncertainties, the dynamic hierarchy of business process, and

the dynamic modification of enterprise organizations, and all of these improve the flexibility and extendability of

workflow management systems dramatically.

Key words: flexible workflow; dynamic hierarchy description; task decomposition; split process

Present workflow management systems have to
face new challenges such as enlargement of system
scalability, expansion of the application fields, and re-
organization of enterprises. The traditionally static
schema cannot adapt to the changes and always en-
forces a process deviating from its definition. In prac-
tice, most process flows are flexible and have random
factors. Some of these factors are determinate and oth-
ers are non-determinate or dynamic, which are unpre-
dictable at build-time'"'. The non-deterministic and dy-
namic factors cannot be described using traditional
modeling techniques. A new modeling technique is re-
quired to support the dynamic description of the non-
determinate factors to make workflow management sys-
tems more adaptive, flexible, and extensible'' .

Flexibility of workflow allows some parts of the
process definition to be changed at run-time''. Saqid
et al. " presented a notion of BUILD activity to solve
the flexible description of a process with multi-bran-
ches. The approach in Ref. [4] introduced a new node
named block box to encapsulate non-determinate fac-
tors. In Ref. [5], a workflow model was provided based
on coordination theory and feedback mechanism. How-
ever, all of these researches have the same premise that
the non-determinate factors in processes are predicta-
ble. Furthermore, adding new nodes can make a system
more complex, and cannot be dealt with by the above
mentioned methods.

Mangan et al.'” proposed a flexible workflow

Received 2007-05-18.
Biographies: Yang Fei (1978—), female, graduate; Yin Baolin (corre-
sponding author), male, professor, yin@ nlsde. buaa. edu. cn.

model based on a sub-process. Jorgensen!” developed
an interaction-based framework for flexible workflow
models. Bassil et al.'™ extended the application pro-
gramming interface of the workflow reference model to
support flexible operations. These researches support
dynamic extension of processes, but lack consideration
for the influence of organization changes on business
processes and the integrity of process extension.

In order to solve the above problems, we present a
dynamic hierarchical description methodology of the
workflow. In every layer of process definition, a unified
description method is used without introducing any
special modeling elements. The methodology supports
the description of unpredictable non-determinate factors
and the dynamic changes of organization structures.
The process designer may define only the main process
at build-time, and allow the activity performer to de-
cide whether to execute its task according to the defini-
tion or extend it in more details by dividing it into
smaller units which will be done by his subordinates.
To ensure the consistency and integrity of the extended
process, some constraint rules will apply.

1 Flexibility Workflow Supporting Dynamic
Hierarchy Description

Flexible workflow should be able to handle dy-
namic changes of enterprise organizations and realize
business process reengineering promptly. There are two
meanings of the term “flexibility”. One is flexible def-
inition, and the other is flexible extension. In flexible
definition, process definition tools can describe all
complex business processes in the simplest way but

Dynamic hierarchy description and constraint rules of flexibility workflow 475

leave flexibility to the user to supplement the process
definition and subordinate definition at run-time based
on his demand. In flexible extension, users can extend
some unpredictable non-determinate factors at build-
time during process execution and set the function
range of his subordinates.
1.1 Workflow definition

Definition 1 A business process is an ordered set
composed of a series of activities. A business process
contains several activities and control rules between
them. Process is defined as

Process = (Activities, Rules)

where Activities is the set of activities in a process;
Rules is the set of the relation between activities.

Definition 2 Activity is the basic unit of process,
formally expressed as

Activity = (ID, Name, Performer, Data, Tool,

Mapping, Condition)

where ID is the unique identifier of an activity; Per-
former appoints the activity actor; Data is the set of
workflow data related to the activity, including input
data and output data; Tool indicates the data processing
tool; Mapping is the set of data mapping, describing the
relation between workflow data and input/output data
of the process tool; Condition is the control condition
of state transition.

Definition 3 The performer is the activity actor,
it is defined as

Performer = (P, P P, SuperiorList,

Name >
JuniorList, ColleagueList, RoleList)
where P, is the unique identifier of a performer; Py,
is performer name; P, is the node processor that the
performer assigned; SuperiorList is the superior list of
the performer; JuniorList is the junior list of the per-
former; ColleagueList is the colleague list of the per-
former; RoleList is the role list of the performer’ s acts.
Definition 4 Organization stands for the relation
of the hierarchy and the subjection among performers
inside an enterprise, it is defined as
Organization = (O, Oy,
ParentID)
where O, is the unique identifier of an organization;
0]

for the head of an organization; Performers are the

Principal, Performers,

Name 1S the organization’ s name; the Principal stands
members of an organization who are the primary activi-
ty actors and subordinates of the Principal; ParentID is
the organization ID that O, belongs to, the former is
the parent-organization and the latter is the sub-organi-
zation. A parent-organization may have many sub-or-
ganizations, but a sub-organization can only belong to

one parent.

Definition 5 Role is a 3-tuple:

Role = (RoleName, Capabilities, Privilege)

where RoleName is the name of a role; Capabilities is
the set of capabilities, the role has such as order han-
dling, remittance statistics; Privilege is the set of access
privileges of the role to workflow data.

Definition 6 Workflow data is a variable list in
an activity defined as
Data = (Dy,me» Drypes Dvane)
D D
type, and data value, respectively.

where D represent data name, data

Name » Type* Value

Definition 7 The node processor is comprised of
a definition node processor and a running one, defined
as
Node = (Nyume> Np)

where N, is node name; N}, is node IP. A definition

Name
node processor that is provided for a designer can be
assigned to one or more designers. Similarly, a running
node processor provided for a performer can be as-
signed to one or more performers. A node processor
can be either a definition one or a running one, or both
simultaneously. On the condition of not being confus-
ed, we can also call the running node processor as the
node processor.

Designer depicts main process at build-time. Upon
completion, the process description will be divided into
smaller units to form the least description set each ac-
tivity execution needs, which will be distributed to the
corresponding node processor.

1.2 Dynamic hierarchy description of flexibility
workflow

Dynamic hierarchy description places emphasis on
maintaining the logic structure in a superior layer, but
leaves some uncertainties in the inferior layer. At build-
time, the designer defines the main process and gives
each activity a complete description. At run-time, the
performer (principal of an organization) further reifies
or extends the description. The process description will
not be confirmed until the task is finished.

At run-time, the performer can take the task as a
primitive one or a composite one:

1) A primitive task is the basic entity of workflow
execution with a single function. Under the drive of a
workflow engine, the performer can directly call a
process tool to handle the task according to its descrip-
tion.

2) A composite task is composed of multiple sub-
tasks. If the performer of the task is the principal of an
organization, he has the privilege to decompose the

476 Yang Fei, and Yin Baolin

task within the organization and generate multiple
process units to be handled by his subordinates, and its
function after decomposition is unchanged.

Let M(Activity) be the performer of Activity, O
be an organization and O” be the principal of O. Task
decomposition is defined as Decompose (Activity) =
(Activity,, ..., Activity) if and only if M(Activity) =
0", where Activity is decomposed activity, the process
Activity belongs to is the main process, the process the
sequence Activity,, ..., Activity, are composed of is the
split process, and v is the number of activities in the
split process. The main process and the split process are
a couple of correlated conceptions.

The precondition of task decomposition is that the
performer must have subordinates under his command.
He can decompose the task and let his subordinates
handle it. A performer may decompose a task on his
node processor directly, or when one of its instances
has arrived. After that, a new split process independent
on the main process will be produced, which takes the
decomposed activity as the starting node and the end-
ing node, and the new produced activities as middle

nodes.

The example shown in Fig. 1 is used to demon-
strate dynamic hierarchy description. Process A de-
scribed by the process designer in the first layer inclu-
ding six activities: A,, A, , A;, A,, A, and A,, where
the performers of A, and A" with the symbol = is the
principal of an organization, respectively. After process
A is defined and distributed, each node in it has its own
activity description. The performer of A,” has the privi-
lege to decompose the task and A, is decomposed into
process B, described as Decompose (A,) = (A, , Ay,
A, Ay, Ay, Ay). The performer of A,, in process B is
the principal, A,, can be further decomposed as Decom-
pose (Ay) =(Ax, Ay, Asiys Asis, Agyy, Agy). Ag s de-
composed as Decompose (A.) = (AS, Ay, Ay, Ass,
A.) similarly. The performer of A, is the principal,
but he takes the task as a primitive one and handles it
according to the activity description by himself. The

task execution sequence in Fig. 1 is A, A, , A,,, A,,,
A23’ AZZ’A241’ A242 (A243) ’ A244’ AZZ’ AZ* ’ A3’ (A4) ’ As*)
AS] ’ AS*Z ’ A53’ A; s Aﬁ'

The first layer

The third layer

Fig.1 Process structure supported dynamic hierarchy description

It is not necessary for the designer to distinguish
the primitive task and the composite one or to care
about how the activity performer treats the task at run-
time. Each task is taken as a primitive one by design-
ers. It is only the activity performer who can make the
final decision. All specific features can be encapsulated
into its main process. In this way, the concrete task de-
scription and task disposition of sub-layers can be en-
capsulated as well as predictable and unpredictable
non-determinate factors, which not only facilitate coop-
eration among different organizations but also make it
easy to dynamically adapt process models.

2 Constraints on Dynamic Hierarchy De-
scription

New process activity nodes are inserted during
task decomposition. In order to ensure the consistency
and integrity of the decomposed process and avoid er-
rors such as data loss and illegal access, we should en-
force some constraints upon task decomposition. As-
sume that the main process has an activity sequence of
A, ..,A,(n=1), where A, (1 <ks<n) is the decom-
posed activity. Let S be split process sequence 4,,, ...,
A, (v=1) of A,.

Dynamic hierarchy description and constraint rules of flexibility workflow 477

2.1 Process node constraints

Process node constraints are the limits to the start
activity and the end activity, and the activity perform-
ers in the split process, where the start and end activi-
ties must be the decomposed activities A,,1i.e., A, =
AL AL =A,.

The aim of task decomposition is to divide a task
into smaller units and assign them to subordinates of
the performer, thus the activity performer of split
process S must be subordinates of A, s performer, de-
fined as follows:

If m=M(A,), me O, for each m"=M(A,),j=1,
..., v, then we have m' € O.

2.2 Activity data constraints

Activity data constraints are the limits to data ac-
cess. Since data is the core of the business process, ac-
cess to it must conform to some constraints to ensure
the consistency and integrity of task decomposition.

There are two subsets of data in an activity: input
data and output data. The data constraints apply to both
the data field set and the data type. Let the data field
set of the decomposed activity A, be denoted as
D(A,), which includes the input data field set D\y(A,)
and the output data field set Dy (A,); and let the data
type be denoted as 7(d), d e D(A,), which include the
input data type and the output data type.

1) Input data constraints

During decomposition, the original input data of
the decomposed activity A, should be unchanged, i.e.,
the input data of A, after decomposition should be the
same as those of A,. However, there may be some tem-
porary data added in the split process. This means the
input data of A, is a subnet of the set of the input data
of the union of all activities in the split process. Let
N(d) be the name of input data field d, the input data
constraints can be described as follows:

For any d € D\ (A,,) there exists d' € Dy (A,)
such that N(d") = N(d), and vice versa; at the same
time we have D (A;) CUDK(Ay),j=1,2,...,v.

IfdeDy(A,),d e Dy(A,),and N(d') =N(d),
we have T(d') =T(d).

2) Output data constraints

During decomposition, the original output data of
the decomposed activity should be unchanged though
we may add some temporary output data to save inter-
mediate results. Namely, the output data of A,, after de-
composition should be the same as those of A,. The set
of output data of A, is a subset of the union of the out-
put data of all activities in the split process, described
as follows:

For any d € Dyyr(A,,) there exists d’ € Doy (A,)
such that N(d') = N(d), and vice versa; at the same
time we have Dyr(A,) € UDgy(A,),j=1,2,...,v.

If d e Doy (A,), d € Doy (A), and N(d') =
N(d), we have T(d") =T(d).

2.3 Access privilege constraints

Access privilege constraints are operation limits to
activity data. There are three kinds of access privilege
to data field d of activity A,, denoted as P(d): D No
read and no write; (2) Read only; @) Read and write.
The access level, denoted by L, from the lowest to the
highest is L(1) <L(2) <L(3).

The access privilege to data field d of A,, after de-
composition is the same as that of A,. If the access
privilege level of data field d is L(P(d)) in an activi-
ty, then each access privilege level of d in activities of
the split process is no higher than L(P(d)). In a word,
the access privilege constraints can be described as fol-
lows:

For each d e D (A,), d' € Dy (A,), if N(d') =
N(d), then we have P(d') =P(d).

For each de D\y(A;),d" e D\y(Ay),j=1,2, ...,
v, if N(d') = N(d), then we have L (P (d)) <
L(P(d)).

3 Conclusion

In this paper, a new description method of flexi-
bility workflow is discussed. The method provides a
dynamic hierarchical way to define a workflow with
non-determinate or dynamic factors during the defini-
tion stage. With this method, the main process of a
workflow defined at build-time can be reified and ex-
tended afterwards by the principal of the sub-organiza-
tions, at either the build-time or the run-time. This ap-
proach supports the description of unpredictable uncer-
tainties, the dynamic hierarchy of business processes,
and the dynamic modification of enterprise organiza-
tions, and all of these improve the flexibility and ex-
tendibality of workflow management systems dramatic-
ally. Furthermore, a series of constraint rules on process
node, activity data, and access privilege are discussed,
which ensure the consistency and integrity of dynamic
hierarchy description.

References

[1] van der Aalst W M P, Jablonski S. Dealing with workflow
change: identification of issues and solutions [J]. Interna-
tional Journal of Computer Systems Science and Engineer-
ing, 2000, 15(5):267 —276.

478

Yang Fei, and Yin Baolin

(2]

[3]

[4]

[5]

Zhou Jiantao, Shi Meilin, Ye Xinming. State of arts and
trends on flexible workflow technology [J]. Computer Inte-
grated Manufacturing Systems, 2005, 11(11): 1501 — 1510.
(in Chinese)

Sadiq Shazia, Sadiq Wasim, Orlowska Maria. Pockets of
flexibility in workflow specification [C]//Proc of the 20th
International Conference on Conceptual Modeling. Yokoha-
ma, 2001: 513 - 526.

Sun Ruizhi, Shi Meilin. A process meta-model supporting
dynamic change of workflow[J]. Journal of Software,2003,
14(1):62 — 67. (in Chinese)

Fan Yushun, Wu Cheng. Research on a workflow modeling
method to improve system flexibility [J]. Journal of Soft-

E M TIERHEE X it K

7S

(6]

[71

(8]

ware, 2002, 13(4) : 833 — 839. (in Chinese)

Mangan Peter, Sadiq Shazia. On building workflow models
for flexible processes [C]//Proc of the 13th Australasian
Database Conference. Melbourne: University of Melbourne,
2002: 103 —109.

Jorgensen H D. Interaction as a framework for flexible
workflow modeling [C]//Proc of the International ACM
SIGGROUP Conference on Supporting Group Work. New
York: ACM Press, 2001:32 —41.

Bassil S, Rolli D, Keller R K, et al. Extending the workflow
reference model to accommodate dynamism [R]. Montreal:
Software Engineering Laboratory of University of Montre-
al, 2003.

H 23R & 0]

FEM

(A FAVEAKR K FH AALF R, L 100083)

WE:AFABRTRATER Z A SHA X ORE BT FWU IAFRG S S ERIEE T ok, 4

uuﬁle‘l‘/\ n /éE mﬁzkx

NEE S 2R TALEAESE

LB Z) i TR i AT iRy AL A

PRIES) & B R PG B Fe TEME TR T SR RFEERM — R 7 RN, # bk o)G 0 iR AR
JRA RAL T IR TR Ty ok AR R T gt IR A B Z 0GR, AT LSRR S S A

RIGEVAB AL LM b TAC, AR KHIG I T TAFRE
Ao s o PR

*ﬁglﬂ H 7715‘ il’f/};‘mu H Zj] }20\}1\}7
E 5 S : TP391

B RGFERFTY L

