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Motion connectivity-based initial video object extraction
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Abstract: In order to obtain the initial video objects from the video sequences, an improved initial video object

extraction algorithm based on motion connectivity is proposed. Moving objects in video sequences are highly

connected and structured, which makes motion connectivity an advanced feature for segmentation. Accordingly,

after sharp noise elimination, the cumulated difference image, which exhibits the coherent motion of the moving

object, is adaptively thresholded. Then the maximal connected region is labeled, post-processed and output as the

final segmenting mask. Hence the initial video object is effectively extracted. Comparative experimental results

show that the proposed algorithm extracts the initial video object automatically, promptly and properly, thereby

achieving satisfactory subjective and objective performance.
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With the increasing popularity of multimedia ap-
plications and content-based interactivity, new video
describing and coding schemes are necessary. The
standard MPEG-4, enabling content-based functional-
ities, introduces the concept of video object planes
(VOPs) . Each frame of the input sequence is composed
of arbitrarily shaped image regions such that each VOP
describes one semantically meaningful object or video
content of interest. Real-time object-based video appli-
cations demand automatic extraction of semantic video
objects (VOs).

An intrinsic problem of VO extraction is that ob-
jects of interest may not be homogeneous with respect
to low-level features such as color, intensity, texture,
edge, or optical flow' ™. Thus, conventional algorithms
for video object segmentation may fail to obtain mean-
ingful partitions. Due to the inherent difficulty of defi-
ning semantic video objectsm, automatic extraction of
video objects, especially the initial video objects, is still
quite a challenging problem.

Moving objects are often characterized by a co-
herent motion that is distinct from that of the back-
ground. The connectivity of the motion, semantically
meaningful in a sense, is an advanced feature for seg-
menting video sequences into VOs. Detecting regions
of change in images of the same scene is of widespread
interest due to a large number of applications in diverse
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video object segmentation algorithms

Conventional change detection-based

(1431 are conduc-
ted on the change mask comprised by the set of pixels
that are “significantly different” between the last image
of the sequence and the immediately previous image.
These methods make no use of the motion connectivity
so that rather complicated post-processing is necessary
to obtain satisfactory segmentation results.

Contrarily, the cumulated difference image ( CDI)
of a certain number of successive frames exhibits the
motion connectivity. Accordingly, an improved motion
connectivity-based algorithm to automatically extract
the initial video objects is proposed in this paper. Ex-
perimental results demonstrate that this algorithm is
very effective and efficient. And the extracted initial
video objects are fairly good for some real-time object-
based video applications, which helps to alleviate the
difficulty of semantic video object extraction.

1 Segmentation Algorithm

1.1 Motion connectivity as cue for segmentation

Foreground moving objects are distinguished from
the background by their different coherent motions.
Motion information can complement other features that
are commonly adopted for segmentation, such as color,
intensity, or edges. This makes motion a very useful
feature incorporated into video object segmentation al-
gorithms.

Moving objects are highly connected and struc-
tured'"’ . That is, the coherent motion of an object is the
gathering of all the motions of different components,
and hence is assigned to a structured moving object.
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Thereby, the motion connectivity of an object is an ad-
vanced feature indicating semantic meanings and is
useful for segmentation.

In a video sequence with a still or a global-mo-
tion-compensated background, the difference image of
successive two frames demonstrates the motion of the
foreground object. But due to the motion locality and
instantaneity, plus the influences of noises, the change
detection mask (CDM) of immediately successive two
frames only covers topical and localized moving parts,
as illustrated in Fig. 1(b). Change detectors also mark
occlusion areas as changed, while the object itself is
unchanged unless it contains sufficient texture. This
makes exact boundary localization very difficult, so
that an additional mechanism is necessary to fill the
holes inside the object. On the contrary, the cumulated
difference image of a number of successive frames ac-
cumulates all the motions during a certain period of
time, and thereby sufficiently exhibits the coherent mo-
tion of the object. In the mean time, in comparison with
the connected and structured moving object, the sto-
chastic noises are isolated and accumulate somewhat
more slowly. Thus, in the cumulated difference image,
the object motion is far more significant, as illustrated
in Fig. 1(c).

Fig.1 [Illustration of motion connectivity. (a) Initial frame
of M & D sequence; (b) Difference image of the first two frames;
(c¢) Cumulated difference image of 10 frames

1.2 Segmentation based on motion connectivity

Traditional change detection-based VO segmenta-
tion methods include the following procedures: thresh-
old the difference image of immediately successive two
frames, post-process the output and obtain a CDM, log-
ically add an appropriate number of successive CDMs
to obtain the final segmenting mask and extract the
video object.

In comparison with the conventional methods, a
novel initial video object extraction algorithm is pres-
ented here, which is subdivided into the following four
steps: (1 Calculate a certain number of immediate
frame difference images (IFDIs) and accumulate them
to obtain the CDI; (2) Nonlinearly transform the CDI
with an adaptive threshold; (3) Label and post-process
the maximal connected region (MCR) and output it as
the final segmenting mask; (4) Extract the initial video
object. The flowchart of the proposed algorithm is
shown in Fig.?2.

Input video sequence

A 5 | A fr

' P '

Calculate the immediate Calculate the immediate

frame difference image frame difference image
} 1FDL JIFDI7
| Calculate the cumulated difference image l
CDI

| Adaptively determine a threshold I

*

t

Nonlinearly transform the CDI
Get the thresholded mask

B
Maximal connected region lable
Obtain the segementing mask by motion connectivity

MCR

Initial VO segmenting mask
Fig.2 Flowchart of the proposed algorithm

1.2.1 Calculate the cumulated difference image

Human eyes are more sensitive to luminance than
to colors, so intensity is adopted here. We denote by
Jfi(x,y) the intensity or luminance of pixels (x, y) in
frame k, and f,,,(x, y) in frame k + 1. Then the imme-
diate frame difference is

d(x,y) = [fu(x.y) =i (x,y) | (1)
And the cumulated difference image is
T
cd(x,y) = Y d(x,y) (2)
k=1

where T is the number of frames to be accumulated.
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1.2.2 Adaptively threshold the cumulated differ-
ence image

Selecting an appropriate value to distinguish the
foreground from the background under certain criteria
is critical in the threshold algorithms. The classical
threshold algorithm analyzes the histogram of features
such as luminance, hue and saturation. The threshold
value is determined by manual interactions, which re-
stricts the algorithm from automatic functioning. Many
adaptive threshold algorithms have been proposed, such
as a threshold based on a genetic algorithm'®' . Unfortu-
nately, due to the inevitable sharp noise in the CDI,
these global threshold methods cannot afford satisfacto-
ry performance here.

In video sequences of natural scenes, slow changes
in textures and stochastic changes in brightness caused
by noises are regarded as Gaussian signals'”'. That is,
the noise in the k-th difference image d, follows a
Gaussian distribution, assuming N(O, ai). As the noises
in the difference images are independent, the summed
noise in the CDI also follows a Gaussian distribution

T
N(0, ¢%), where ¢ = Z o; . As the distribution of
k=1

foreground object’ s motion information is rather differ-
ent from that of Gaussian signals, the foreground mov-
ing object is very significant in the CDI. Encouraging-
ly, because Gaussian distribution features in the fact
that its higher statistics is zero, a higher order statistics
(HOS) algorithm has the unique merit of extracting
non-Gaussian signals from the Gaussian background'®' .
Consequently, fourth order moment statistics in the CDI
is applied here to remove the noise'*' .

Intuitively, a moving foreground object often oc-
curs on the central position of the frame image. Four
blocks in the CDI, so-called still blocks, are specifically
selected for background noise estimation, as shown in
Fig.3.

S S$2

S3 54

Fig.3 Selection of still blocks

In order to obtain a threshold adherent to the real
background noise statistics, the pixels in each still
block are sorted according to their intensity. And the

pixels with the highest and lowest intensities are elimi-
nated to remove the blight of sharp noises. The vari-
ance of the remaining pixels in each still block is cal-
culated. The median of the four values is regarded as
the estimated variance of background noise, and is
adopted for the following nonlinear threshold transfor-
mation. The estimation procedure is described as fol-

lows:
m, -1 2 cd(x,y) i =1,2,3,4 (3)
Ni(x.y)eS,
1
ol =5 2 ledxy) —m)’ (4)
i(x,y)e8;
o’ = median{o;, 03, 03, 07 ) (5

where S, corresponds to the remaining pixels in the i-th
still block, cd (x,y) denotes the intensity of pixel (x,
y) in the CDI, m;, is the average intensity, and N, is the
number of the remaining pixels. In applications, the
size of still blocks is typically set to 16 x 16.

Thus, the threshold ¢ =c¢(¢”)” is obtained, where
¢ is an experiential factor corresponding to a certain
type of video sequence.

Considering any pixel p in the CDI, the fourth or-
der moment in its neighboring patch is calculated,

m = 1}4()2 [ed(x,y) —m,1*  (6)

where

_ 1

m, = M(x;énfd(x’ y) (7)
7, corresponds to the patch of p; m, is the average in-
tensity of this patch; M is the number of the pixels in-
side the patch. In applications, the patch size is usually
set to 5 x5 for CIF sequences and 3 x3 for QCIF se-
quences.

Compare the moment m(n‘;) with ¢*, and the
thresholded mask (TM) is obtained as follows:

1 if m =r*
Mp

TM(p) ={ (3)

0 otherwise
1.2.3 Maximal connected region labeling and
post-processing

After the thresholding operation, there still exists
noise greater than the threshold. Accordingly, there is
discontinuity in the thresholded mask. One of the con-
ventional methods dealing with this problem is mor-
14 These methods

can further reduce the noise and fill the “holes” and

phological opening-closing filtering

“cracks” inside the object. However, these methods do
not work well for dramatically changing noise regions
and big shadow regions.

Because of the motion connectivity of the fore-
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ground object and the isolation of the noise, in the
thresholded mask the area of the noise regions is nor-
mally much smaller than that of the semantic object. So
in a video sequence with one object or multiple con-
nected objects, the maximal connected region is where
the objects are. Thus, maximal connected region labe-
ling is adopted in our algorithm to extract the moving
object. For cases of two or more separated objects, the
number of the maximal connected regions to be labeled
is accordingly increased. This method guarantees the
integrality of the extracted object. And it is capable of
removing the shadow regions that are not close boun-
ding to the object, as well as the big noise regions that
conventional methods cannot work well with.

In order to guarantee that the final mask has good
continuity without dissociative small “holes”, post-pro-
cessing including morphological filtering and optional

®

scan-filling!” operation according to the spatial uni-
formity is applied. Morphological opening-closing by
reconstruction filters with appropriate structural ele-
ments can remove the “holes” and “cracks” caused by
noise and interior texture consistency. For cases of sin-
gle objects with slight movements inside still back-
grounds, optional scan-filling operation further helps to
achieve a satisfactory segmentation mask.

After the post-processing, the final segmenting
mask is obtained. And the initial foreground object is
effectively extracted.

2 Experimental Results and Analysis

An experiment is implemented on the Claire se-
quence (CIF), which is one of the standard testing se-
quences for MPEG-4. The experimental results are

shown in Fig. 4.

Fig.4 Experimental results of the proposed algorithm on the Claire sequence. (a) Original initial frame; (b) IFDI of first two frames;

(c) CDI of first five frames; (d) Thresholded mask; (e) Maximal connected region; (f) Final segmenting mask; (g) Extracted initial VO

Once the original initial frame (see Fig.4(a)) is
read, followed by sequential frames, the immediate
frame difference images are calculated. And normally 5
IFDIs (the first one is shown in Fig.4(b)) are added
up to generate the cumulated difference image, as
shown in Fig. 4(c). An adaptive threshold algorithm
based on background noise estimation works to signify
the foreground object, where the experiential factor c is
typically set to 1 for sequences such as Claire. The out-
put is the thresholded mask (see Fig.4(d)). Then the
maximal connected region (see Fig.4(e)), labeled ac-
cording to the motion connectivity, is post-processed
with morphological filtering and scan-filling opera-
tions. The final initial VO segmenting mask and the ex-
tracted initial foreground object are respectively shown

in Fig. 4(f) and Fig.4(g).

In comparison with the background noise estima-
ting method without sharp noise elimination in Ref.
[4], in our experiment 10% of the pixels in the still
blocks with the highest intensity and 10% of the pixels
with the lowest intensity are excluded from the follow-
ing noise estimation procedure. Because these pixels
are typically influenced by the sharp noises and accord-
ingly reduce the accuracy of the estimation from the
actual statistics of noise. Take still block S, in Claire’ s
CDI as an example. The data in this block are shown in
Fig.5.

Removing the 20% pixels of extrema, the esti-
mated ¢; =2. 502 4. Without pixel elimination, the esti-
mated o =5.316 4. With higher estimated noise vari-
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Fig.5 Still block S, of Claire’ s CDI

ance, the threshold to separate the foreground and the
background increases. And more pixels of slow motion
are classified to the background, as illustrated in Fig. 6.
The post-processed segmenting mask is not unabridged

and not good enough, and so is the extracted video ob-
ject. In other words, in order to obtain a satisfactory
segmentation result, a CDI of more incoming frames is
necessary. This definitely leads to more time delay for
the algorithm to work, which is not desired in some ap-
plications that are rigorous in time consumption.

In Ref. [9] the threshold value is the mean value
of the intensity of the pixels after sharp noise elimina-
tion. This method takes no advantage of the spatial re-
lationship of the neighboring pixels. The classification
of the pixels is independent of one another, which re-
sults in the fact that a CDI of more incoming frames is
a priori before obtaining an unabridged segmenting
mask. Typically, the CDI of 20 frames is adopted in
Ref. [9]. Similarly, as mentioned above, it is not ac-
ceptable for some real-time applications demanding
low time delay. Furthermore, the CDI of more frames
makes the extracted initial object have a much thicker
boundary, as illustrated in Fig. 7. This makes the
boundary refining algorithms take more time to con-
verge the segmented boundary to the real one.

(c)

Fig.6 Segmenting results without sharp noise elimination. (a) Thresholded mask; (b) Maximal connected region; (c)

Final initial VO segmenting mask after the post-processing with scan-filling operation

(a) (b)
Fig.7 Comparative experimental results. (a) Extracted initial
VO by the method in Ref. [9]; (b) Extracted initial VO by the pro-
posed algorithm

Manual extraction of masks is taken as a reference
(so-called ground-truth) for object performance evalu-
ation. The space accuracy, one of the evaluation criteria
for segmenting algorithms, is formulated as

T AT (xy) ® A% (x,))
S — d(Aesl,Aref) :1 _ (x,y)
zAref(x’ y)

(x,y)

(9

where A and A™" are the estimated and reference ob-
ject masks, and & denotes the logical XOR operation.

For the Claire sequence, the space accuracy of the
proposed algorithm is 88. 9%, while that of the method
in Ref. [9] is 85.6%.

More comparative experimental results are demon-
strated in Fig. 8.

Figs.8(a) to (d) are the experimental results on
the M & D sequence, which is selected on purpose as a
representative for cases of multiple connected fore-
ground objects. Fig. 8(c) is the extracted initial VO by
the method in Ref. [9]. Because the CDI of 5 frames
(see Fig. 8(b)) is not sufficient for this method to ex-
tract a satisfactory unabridged initial VO, the CDI of 20
frames is applied. In comparison with this, the proposed
algorithm achieves much better performance and the
extracted object (see Fig. 8(d)) has a rather thinner
boundary. Figs. 8(e) to (h) are the experimental results
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(e)

Fig.8 Comparative experimental results. (a) Initial frame of the M & D sequence; (b) CDI of the first 5 frames; (c) Extracted initial VO
by the method in Ref. [9] with the CDI of 20 frames; (d) Extracted initial VO by the proposed algorithm with the CDI of 5 frames; (e) Initial
frame of the Tennis sequence; (f) CDI of the first 6 frames; (g) Extracted initial VO by the method in Ref. [9] with the CDI of 20 frames; (h)

Extracted initial VO by the proposed algorithm with the CDI of 6 frames

on the Tennis sequence, which is selected as a repre-
sentative of cases of separated foreground objects. Sim-
ilarly, the proposed algorithm obtains rather better seg-
mentation. Generally speaking, because of the improve-
ments to the threshold calculation, the proposed algo-
rithm works somewhat better than its predecessor.

From the above comparative experimental results,
it is clear that the proposed algorithm can extract the
initial video object efficiently and effectively, and it
has fairly satisfactory subjective and objective perform-
ance.

3 Conclusion

An improved initial video object extraction algo-
rithm is proposed in this paper. This algorithm is based
on the inherent motion connectivity of moving objects.
By adaptively thresholding the cumulated difference
image with sharp noise elimination, the connected mov-
ing regions where the objects lie in are signified. After
the maximal connected region labeling and post-pro-
cessing, the final initial VO segmenting mask is ob-
tained. And the unabridged foreground object is extrac-
ted automatically, promptly and properly.

This algorithm has fairly good performance for se-
quences of still backgrounds and foreground objects
with slight movements, which appeals to applications
such as video communication and video conferencing.
For the cases of moving backgrounds, global inter-
frame motion estimation and compensation is a priori.

Noticeably, as the cumulated difference image ac-
cumulates object motion for several timeslices, plus the
effects of morphological filtering operations in post-
processing, the segmented foreground object has a fair-

ly thick boundary. This is acceptable for applications
such as video surveillance and video retrieval. But for
applications demanding high accuracy such as video
compression and video synthesis, it is necessary to ex-
plore some methods to further refine the boundaries.
Many applicable boundary refining algorithms have
been proposed. An optional solution is proposed in
Ref. [10]. Thus, the initial VO with a more accurate
boundary is successively obtained, and then is available
for a sequential video object tracking process.
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