Journal of Southeast University ( English Edition) Vol. 23, No. 4, pp. 529 -533 Dec. 2007 ISSN 1003—7985

Exponential stability criteria on neural networks
with continuously distributed delays

Li Tao Fei Shumin Zhu Qing

(School of Automation, Southeast University, Nanjing 210096, China)

Abstract: The exponential stability of a class of neural networks with continuously distributed delays is
investigated by employing a novel Lyapunov-Krasovskii functional. Through introducing some free-weighting
matrices and the equivalent descriptor form, a delay-dependent stability criterion is established for the addressed
systems. The condition is expressed in terms of a linear matrix inequality (LMI), and it can be checked by
resorting to the LMI in the Matlab toolbox. In addition, the proposed stability criteria do not require the
monotonicity of the activation functions and the derivative of a time-varying delay being less than 1, which
generalize and improve earlier methods. Finally, numerical examples are given to show the effectiveness of the
obtained methods.
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Time-delays inevitably exist in neural networks for various reasons, and it can induce chaos instability in the
neural networks. Therefore, stability analysis for neural networks with time-delays has been an attractive subject of

81 On the other hand, neural networks

research in the past years and many good methods have been proposed'
usually have a spatial extent due to the presence of a multitude of parallel pathways with a variety of axon sizes and
lengths, and hence there is a distribution of propagation delays over a period of time. It is worth noting that, al-
though the signal propagation is sometimes instantaneous and can be modeled with discrete delays, it may also be
distributed during a certain time period so that the distributed delays should be incorporated in the model. In other
words, it is often the case that the neural network model possesses both discrete and distributed delays'”'.

In view of the importance of both discrete and distributed delays in modeling neural networks, the dynamics
analysis problem for neural networks with discrete and distributed delays has received much attention'”™ . In Ref.
[2], a two-neuron network model with multiple discrete and distributed delays has been studied. However, its results
cannot be directly applied for general neural networks. In Refs. [3 —8], by employing various methods, various sta-
bility criteria are proposed for the neural networks with distributed delays. However, the restriction that the deriva-
tive of time-delay is less than 1 is imposed on those stability criteria in Refs. [3 —5], and in Refs. [6 —7], the stabil-
ity criteria are not presented in terms of LMIs, which renders them somewhat difficultly to be checked. To the best
of the authors’ knowledge, when the stability criteria are presented in LMIs and derivatives of the time-varying de-
lay can take any value, the exponential stability has not been studied for neural networks with time-varying and con-
tinuously distributed delays. This remains important and is investigated in this paper.

1 Problem Formulations

Considering the following neural networks with time-varying and continuously distributed delays:

X(1) =-Cx(1) +Af,(x(1)) +Bf,(x(t —7(1))) +Df K(t = 9)f;(x(s))ds (1)
where x(*) ={x,(*),...,x,(+)}" e R" is the neuron state vector;f,(+) = {f,(*), ....f,,(*)} eR"(i=1,2,3) re-
presents neuron activation functions; C =diag(c,, ..., ¢,) is a diagonal matrix with ¢, >0; A, B, D are the constant

matrices with appropriate dimensions; K(7 —s) =diag(k,(f-s), ..., k,(f —s)) and the delay kernel k,( +) is a real-
valued non-negative continuous function defined on [0, o« ); and the initial conditions associated with system (1)
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are of the forms: x,(f) =¢,(¢#),for all te( —»,0],i=1,2,...,n, where ¢,( -) denotes a real-valued bounded con-
tinuous function defined on ( — «,0].

The following assumptions on system (1) are made throughout this paper:

(H1) 7(t) denotes the time-varying delay satisfying 0 <7(¢) <7,,, 7(#) <u, in which 7, u are the constants.

(H2) Each activation function f;(+) in (1) that satisfies f;;(0) =0(i =1,2,3), is bounded and globally Lips-
chitz with Lipschitz constants o; >0, 0; >O,pj >0 such that

£ (0 =0 [ <oy lx =yl 1f0 —f00 <8 [x=yl,  [fy(x0) =f;(») | <p; |x -]
Vx,yeR; j=1,2,...n (2)

Here, denote 3, = diag(o, ...,0,), ¥, = diag(s,,...,8,),%; = diag(p,,....p,) -

(H3) JO ki(s)ds = 1forall j=1,2,....n.
(H4) There exists a constant number A >0 such that
JO kj(e)ez).ﬁadﬂ = 77].()\) <+ o, j() kj(ﬁ)ezwﬁzdﬁ — ’)’_;()\) < + o© j=1,2,..,n

Denote 7(A) = lrrsl/;gl{w,(/\) 1 y(A) =1rg?$>§l{yj()t) }.

Remark 1 The systems considered in the paper are general enough to cover many results in the literature.
First, the description in (H2) is less restrictive than the usual sigmoid functions. Secondly, the derivative of time-va-
rying delay can take any value but it is not necessarily less than 1, which is more meaningful than the ones in Refs.
[1-2,4].

It is clear that under assumption (H2), system (1) has the point {0, ...,0}" as its equilibrium point. Then, the

problem to be addressed is to develop a condition ensuring that system (1) is globally exponentially stable.

2 Main Results

Throughout this paper, the symmetric term in a symmetric matrix is denoted by * . Then, the following defini-
tion and lemmas are introduced.

Definition 1 The delayed neural networks (1) is said to be globally exponentially stable if there exist scalars
k>0 and y >1 such that lx(o) || squ&H e ", where HqSH = _Elilgg)Hx(G) |. Here, ||x(6) || is the Euclidean norm of

x, and k is called the exponential convergence rate.
Lemma 1'® Let D, S and P be real matrices of appropriate dimensions and P >0. Then for any vectors x and

y with appropriate dimensions, it has 2x" D" Sy< x" D" PDx +y" S" P'Sy.
X Y
Lemma 2" For any given @ R”, 8 € R", NeR™™", X c R™", Y e R"*", Z c R"*", if [ o Z] >0 holds,

the following inequality holds
2atvp < (2] [X TN 2]

B %
Lemma 3"  Given constant matrices X, X,, X;, where X] =X, and 0 <X, =X,, then X, + X, X, 'X, <0 if
. XzT _Xz X3
and only if © |1 <0, o0r ] <0.
) * Xl

Theorem 1 For any given scalars 7,, >0 and u, system (1) with (H2) and time-delay satisfying (H1) has
one equilibrium point and is globally exponentially stable if there exist matrices P >0, 0 >0, R >0, S >0, diagonal
matrices T>0,K=0,U> 0,V > 0, W=0, H=0 and some appropriately dimensional matrices M, N, P,(i =1,2),
X, Y, Z such that (3) is true

X X, Y
Xy X 0. ==[2 ™) 3
= = =
[* Z] * 3 o [* —TmS]< )
* * Z

where IT = {MT, 0,N%,0,0,0,0, O}T; £ is expressed followingly with



Exponential stability criteria on neural networks with continuously distributed delays 531

2, 0, -Y -M+N' P'A 0 P'B 0 P'D
0D, -Y, K' +PA 0 P,B 0 PID
* * 0., 0 0 0 0 0
o= * * * -U 0 0 0 0
* * * * -V+R 0 0 0
* * * * * -(1-wR-W 0 0
* * * * * * -H+T 0
L % % * % * * * -T-
2,=3K+P-P -C'P, +7,X, +Y,
Q,=-C"P,-PC+Q +7, X, +M+M" +Y, +Y,| +3/U3, +31V3, + 37 HS,

2, =-P,-P, +7,X, +7,(S +Z)
2, =-(1 -wo -N-N' +2;W22
Proof First, similar to Ref. [1], let ¥(¢) = W(x(¢t),x(t —7(1)) =diag(yy, (x, (1), x,(t =7(8))), ..., ,(x,(1),
x,(t—7(1)))), where

fr(a) _le'(ﬁ)

Vi(ap) ={ a-p P
5, a=p
Then, by (2), it is easy to see that
L(x(0) =fi(x(t —7(0))) = W1)(x(1) —x(1 —7(1))) -3, S W <3, (4)
Therefore, system (1) can be rewritten in the following descriptor system as
x(1) =y(1)
Y1) == Cx(0) +AF,(x(0) +Bfi(x(0) ~Bw() [ y(ds +D[ K —s)f3(x(s))ds} ©
Construct the Lyapunov-Krasovskii functional:
V(x(1) =V, (x(1)) +V,(x(1)) +V;5(x(1)) (6)

where

Vix(0) =x"0Px(0) +2 3 k[ (1,09 + 0,905 + [ [ (90 +£T(x(9)RE(x(5) ds

=T

Vi(x() = [ fieyT(s)(S +Z)y(s)dsdo, Vy(x(1)) = Zrjf:kj(e)fi_eﬁj(xj(s))dsde

with P>0,0>0,R >0, S >0,Z=0, T =diag(¢,, ..., t,) >0, and K =diag(k,, ..., k,) =0. It is clear from (2) that,
for any diagonal matrices U >0, V >0, W=0 and H =0,
0 < [x"(N3] U\ x(1) —fi(x(D)Uf,(x(1)) +x"()3,VZ,x(1) —fo(x(1) V,(x(1)) +
x'(t = (D) WIx(t —7(1) —fo(x(1 =7(0)) W, (x(1 = 7(0))) +
x'(0) 35 H3x(1) —fi(x(D))H f,(x(1))] (7)
Now, the derivative of V,(x(t)) along the trajectories of system (5) yields
Vi(x(D) <2x"()Py(1) +21f(x(1)) +x"()3\]Ky(r) +[x"()Qx(1) +f,(x(D))Rf,(x(1))] -
(1 =[x (1 =7(0)Qx(t —7(1)) +y,(x(t —=7(0)))Ry,(x(t —7(1)))] (8)
According to (5), it can be deduced that

2o =206 [ <06 ([ 20 (oo

yous [V Ka-onaenes ) )

0 0 !
[l =[lwn |
T T T P 0 . . . . .
where n {f) ={x (1), y (1) },G = [ PP ] and P, P, are the constant matrices of appropriate dimensions. Using
1 2
lemma 2, it follows from (4) that

20610 B [ Y@ ds <7 (0 Xn(1) +fi()yT(S)Zy(S)ds +
29" () {Y(x(1) —x(1 =7(D)) =G'[0 B"1"(f,(x(1) —fo(x(1 =7(1)))} (10)
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Next, together with Egs. (8) to (10), we can obtain

Vi) <211+ 0x 1K+ o {61 M0 Te6 o) +

GT[(;]fz(x(t — (1)) +GT[%U[_OQK(t — 9)f,(x(s))ds +Tz—mxn(t) +Y(x(1) —x(t —T(l‘)))} +

t

[ YOm0 +1x"(0Qx() +AEOIRLET = (1 =[x = (1) Qx(1 = (1) +
L (x(t =7(D)RA(x(t = 7(1)))] (1)
Va(x(0) <7y (S +2y(1) = [y (9Sy(9rds - yT(9)Zy(s)ds (12)

t—7(1) t—7(1)

Vi(x(0) < S TRED) - ([ K- 9fxends) T([ Ka-9fixtnds) a3

The following equality is true for any matrices M, N with appropriate dimensions

0 =2[x" (DM +x"(t =7(D)N][x(1) —x(1 - (1)) -j' y(s)ds] (14)

t—7(1)

Now, adding the terms on the right of (7), and (11) to (14) to V(x(?)), it has

: g @ -2 T
Vx(n) < T(l‘)fz—fu)g (t’ S)[ -7(1S ]g(t’ s)ds

where £.9) = {0, ¥'(r =r(0). fix0). £G0). LGt =70). L0, ([ K@ -9fx:)ds) L (9}
and £2 is defined in Eq. (3). Letting @ = ['Q B T((t))ISI] and by lemma 3, it can be shown that @ <0 is equivalent
* -7t

to 2+( —7(0) ID(7(HS) ' ( -r(HID" <0, and 5<0 in Eq. (3) equals 2+ (7,ID(7,S) _I(T,,,IDT <0. Hence,
Z<0 can guarantee @ <0. Defining A =2 + (7, IT) (7,,S) "' (7,I)", from lemma 3 and (3), we have V(x(1)) <
A, (A) [[x(2) | <0, for all x(7) #0.
Then let V(x(1)) =e*V(x(1)), it has
V(x(1) =2ke™V(x(1)) +eV(x())=V(x(1) - V(x(0)) < ft[ZkeZkSV(x(s)) +e™ A, (4) |x(s) [*1ds
0

(15)
With lemma 1, (H1) to (H4) and defining p = max {p:}, it is easy to have
V(x(0)) < 71H¢H2 (16)
where A = A (P) + 41, (3K) + 7,4,,(Q) + 7,4, (ZR3,) +27,7°[A,.(S) + A, (Z)][A,.(CC) +
Ao (2'ATAZ)) +0,,(3,"B'BY,) +A,,(3,'3) A, (D'D)] +p'm(0) A, (T) , and

V() < 0,x() [P +0,[ lxtwFdv + 3 o k(o) Fix0)dudo ()

where @, = A, (P) +4A,,(3,K), 0, = 1,,,(0Q) +A,,(3RY,) +27,A,,(S+Z)[1,,(CC) +1,,(3/A'AY))
+ X (23B'B3)) + A, (35'35) A, (D'D)].
Then from Egs. (15) to (17) and (H4), it can de deduced that
V(x(1) < [2kO, + A (A) +2k0O, 7, + 2kar(k) A, (35" T3,) | f ™ x(v) [Pdv +
0

[2k0,7,,¢™™ + 2ky(k) A, (35T35) + Al ||
Choose a k, >0 such that 0 = 2k,0, + A, (A) +2k,0O,7, "™ + 2kyw(ko) A, (Z1T3;). Then,
V(x(1) < [2kyy(ky) Ay (25" T2) + 2,07, + Al @] = $ |l
$ 17
R P
concluded that system (1) is exponentially stable and it completes our proof.

Meanwhile, V(x(£)) =e" A, (P) ||x(7)

?, therefore ||x(7) ||< [ ||¢||e'k°’. Using definition 1, it can be

3 Numerical Examples

Example 1 Consider a two-neuron neural network (1):

x'(t):—[l 0]x(t)+[ 1 -1.7

0 0.9 16 1 Jpon +[1 0

o5 o sl =m(0)) (18)
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with f(s) ={0. 2tanh(s), 0.2tanh(s)}", 7(#) =sin’¢ +0.01. By theorem 1, the method shows system (18) to be glob-
ally exponentially stable. However, theorem 1 in Ref.[1] fails to do this.
Example 2 Consider the neural network (1):

X(1) =—=Cx(t) +Af(x(1)) +Bf(x(t —71(1))) +DJ K(t —9)f(x(s))ds (19)

) 0.9 0 1 -1.7 1 0.6 0.4 0.3 )
wih C=[" % el a=[ o T B=los aslP=loy ool T et 00L () =
{0. 2tanh(s), 0.2tanh(s)}", K(z-s) =diag{e “"¥,2e """ }. Then by theorem 1 in this paper, it is easy to obtain

that (19) is exponentially stable. However, according to theorem 1 in Ref. [10], A =C - |A |3, - |B|3, - |D|3;
_ [ 0.42 -0.52

-0.44 0.40
nition 1 in Ref. [8], it is not an M-matrix. Thus theorem 1 in Ref. [8] cannot prove its exponential stability.

] , and its successive principle minors are 0. 42 and —0. 060 8, respectively. According to defi-

4 Conclusion

In this paper, through introducing some free-weighting matrices and the equivalent descriptor form of the ad-
dressed system, one sufficient condition for the exponential stability of the equilibrium point is derived for a class of
neural networks with time-varying and continuously distributed delays. Finally, two numerical examples are used to
demonstrate the usefulness of the main results.
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